Jiaheng Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/3534040/jiaheng-zhang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 3,869 60 35 h-index g-index citations papers 116 8.6 6.14 4,934 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
106	Nanoconfined Ionic Liquids. <i>Chemical Reviews</i> , 2017 , 117, 6755-6833	68.1	349
105	3,3'-Dinitroamino-4,4'-azoxyfurazan and its derivatives: an assembly of diverse N-O building blocks for high-performance energetic materials. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4437-45	16.4	289
104	Energetic salts with Batacking and hydrogen-bonding interactions lead the way to future energetic materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1697-704	16.4	263
103	Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10532-5	16.4	236
102	A promising high-energy-density material. <i>Nature Communications</i> , 2017 , 8, 181	17.4	141
101	Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9367-71	16.4	127
100	Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7500-3	16.4	126
99	Taming of 3,4-Di(nitramino)furazan. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15984-7	16.4	112
98	Time for pairing: cocrystals as advanced energetic materials. <i>CrystEngComm</i> , 2016 , 18, 6124-6133	3.3	96
97	A Facile and Versatile Synthesis of Energetic Furazan-Functionalized 5-Nitroimino-1,2,4-Triazoles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5877-5881	16.4	88
96	3D Nitrogen-rich metal-organic frameworks: opportunities for safer energetics. <i>Dalton Transactions</i> , 2016 , 45, 2363-8	4.3	85
95	Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels. <i>Chemistry - A European Journal</i> , 2014 , 20, 6909-14	4.8	76
94	Energetic salts based on furazan-functionalized tetrazoles: routes to boost energy. <i>Chemistry - A European Journal</i> , 2015 , 21, 8607-12	4.8	73
93	N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7500	13	69
92	Polynitro-Functionalized Dipyrazolo-1,3,5-triazinanes: Energetic Polycyclization toward High Density and Excellent Molecular Stability. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8834-88:	38 ^{6.4}	68
91	Pushing the Limits of Oxygen Balance in 1,3,4-Oxadiazoles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8816-8819	16.4	67
90	3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12895-7	16.4	64

89	Energetic N,N'-ethylene-bridged bis(nitropyrazoles): diversified functionalities and properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 16529-36	4.8	61	
88	An intrinsically 400% stretchable and 50% compressible NiCo//Zn battery. <i>Nano Energy</i> , 2019 , 58, 338-3	467.1	60	
87	Thermally stable 3,6-dinitropyrazolo[4,3-c]pyrazole-based energetic materials. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 2953-60	4.5	59	
86	Concentrated Hydrogel Electrolyte-Enabled Aqueous Rechargeable NiCo//Zn Battery Working from -20 to 50 °C. ACS Applied Materials & amp; Interfaces, 2019, 11, 49-55	9.5	56	
85	Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11548-51	16.4	54	
84	Nitramines with varying sensitivities: functionalized dipyrazolyl-N-nitromethanamines as energetic materials. <i>Chemistry - A European Journal</i> , 2013 , 19, 8929-36	4.8	52	
83	Energetic fused triazoles la promising CN fused heterocyclic cation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8606-8612	13	51	
82	Bilayer Tubular Micromotors for Simultaneous Environmental Monitoring and Remediation. <i>ACS Applied Materials & Discours (Materials & Discours)</i> 10, 35099-35107	9.5	51	
81	Three-Dimensionally Hierarchical Ni/NiS/S Cathode for Lithium-Sulfur Battery. <i>ACS Applied Materials & ACS Applied & ACS</i>	9.5	45	
80	Ionic liquid-assisted synthesis of nickel cobalt phosphide embedded in N, P codoped-carbon with hollow and folded structures for efficient hydrogen evolution reaction and supercapacitor. <i>Applied Catalysis B: Environmental</i> , 2021 , 283, 119635	21.8	45	
79	Surfactant-Free Synthesis of Graphene Oxide Coated Silver Nanoparticles for SERS Biosensing and Intracellular Drug Delivery. <i>ACS Applied Nano Materials</i> , 2018 , 1, 2748-2753	5.6	44	
78	N-functionalized nitroxy/azido fused-ring azoles as high-performance energetic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7430-7436	13	42	
77	5-(Dinitromethyl)-3-(trinitromethyl)-1,2,4-triazole and its derivatives: a new application of oxidative nitration towards gem-trinitro-based energetic materials. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 478	5 ¹ 479() ⁴¹	
76	Dense iodine-rich compounds with low detonation pressures as biocidal agents. <i>Chemistry - A European Journal</i> , 2013 , 19, 7503-9	4.8	39	
75	Isomeric Cocrystals of CL-20: A Promising Strategy for Development of High-Performance Explosives. <i>Crystal Growth and Design</i> , 2018 , 18, 6399-6403	3.5	39	
74	Combination of 1,2,4-Oxadiazole and 1,2,5-Oxadiazole Moieties for the Generation of High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2015 , 127, 9499-9503	3.6	38	
73	Borohydride Ionic Liquids as Hypergolic Fuels: A Quest for Improved Stability. <i>Chemistry - A European Journal</i> , 2015 , 21, 13297-301	4.8	36	
72	An intrinsically compressible and stretchable all-in-one configured supercapacitor. <i>Chemical Communications</i> , 2018 , 54, 6200-6203	5.8	35	

71	Desensitization of the dinitromethyl group: molecular/crystalline factors that affect the sensitivities of energetic materials. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22705-22712	13	32
70	Bridged bisnitramide-substituted furazan-based energetic materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16961-16967	13	30
69	Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring. <i>ACS Applied Materials & Acs Accordance (12, 45504-45515).</i>	9.5	29
68	Synthesis and Characterization of 4-(1,2,4-Triazole-5-yl)furazan Derivatives as High-Performance Insensitive Energetic Materials. <i>Chemistry - A European Journal</i> , 2018 , 24, 10488-10497	4.8	29
67	O-Doping Boosts the Electrochemical Oxygen Reduction Activity of a Single Fe Site in Hydrophilic Carbon with Deep Mesopores. <i>ACS Applied Materials & Deep Mesopores</i> . <i>ACS Applied Materials & Deep Mesopores</i> .	9.5	25
66	Green primary energetic materials based on N-(3-nitro-1-(trinitromethyl)-1H-1,2,4-triazol-5-yl)nitramide. <i>New Journal of Chemistry</i> , 2017 , 41, 9070-9	03.6	22
65	1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5497-5504	16.4	22
64	Free-standing phosphorous-doped molybdenum nitride in 3D carbon nanosheet towards hydrogen evolution at all pH values. <i>Journal of Energy Chemistry</i> , 2020 , 50, 44-51	12	21
63	Sodium and Potassium 3,5-Dinitro-4-hydropyrazolate: Three-Dimensional Metal®rganic Frameworks as Promising Super-heat-resistant Explosives. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7628-	76 3 4	20
62	Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles. <i>Nanotechnology</i> , 2019 , 30, 185501	3.4	20
61	Encapsulating dual-phased Mo2C-WC nanocrystals into ultrathin carbon nanosheet assemblies for efficient electrocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 408, 127270	14.7	19
60	Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials. <i>Angewandte Chemie</i> , 2016 , 128, 11720-11723	3.6	18
59	3,6-Dinitropyrazolo[4,3-c]pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies. <i>Angewandte Chemie</i> , 2016 , 128, 13087-13089	3.6	17
58	Boosting the capacity of biomass-based supercapacitors using carbon materials of wood derivatives and redox molecules from plants. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 11839-11852	13	17
57	A Facile and Versatile Synthesis of Energetic Furazan-Functionalized 5-Nitroimino-1,2,4-Triazoles. <i>Angewandte Chemie</i> , 2017 , 129, 5971-5975	3.6	16
56	Redox-Sensitive Hyaluronic Acid Polymer Prodrug Nanoparticles for Enhancing Intracellular Drug Self-Delivery and Targeted Cancer Therapy. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 4106-411	1 <i>5</i> ^{.5}	15
55	Novel bio-renewable matrinium-based ionic liquids derived from Chinese herb medicine: Synthesis, physicochemical properties and biological activity. <i>Journal of Molecular Liquids</i> , 2019 , 296, 111822	6	15
54	Cobalt-doped porphyrin-based porous organic polymer-modified separator for high-performance lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2792-2805	13	15

(2020-2019)

53	5-(4-Azidofurazan-3-yl)-1-hydroxytetrazole and its derivatives: from green primary to secondary explosives. <i>New Journal of Chemistry</i> , 2019 , 43, 12684-12689	3.6	14	
52	A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes. <i>Dalton Transactions</i> , 2019 , 48, 7659-7665	4.3	13	
51	Synergistic Enhancement Effects of Carbon Quantum Dots and Au Nanoclusters for Cathodic ECL and Non-enzyme Detections of Glucose. <i>Electroanalysis</i> , 2020 , 32, 1155-1159	3	13	
50	2D MXene Nanomaterials for Versatile Biomedical Applications: Current Trends and Future Prospects. <i>Small</i> , 2021 , 17, e2100946	11	13	
49	Well-balanced energetic cocrystals of H5IO6/HIO3 achieved by a small acid-base gap. <i>Chemical Engineering Journal</i> , 2021 , 405, 126623	14.7	12	
48	Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. <i>Chemical Communications</i> , 2021 , 57, 2049-2052	5.8	11	
47	Synthesis and hypergolic properties of flammable ionic liquids based on the cyano (1H-1,2,3-triazole-1-yl) dihydroborate anion. <i>Dalton Transactions</i> , 2019 , 48, 6198-6204	4.3	10	
46	An intrinsically stretchable and compressible Zn-air battery. Chemical Communications, 2020, 56, 4793-	475986	10	
45	Stimuli-responsive poly(ionic liquid) nanoparticles for controlled drug delivery. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 7994-8001	7.3	10	
44	Facile growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries <i>RSC Advances</i> , 2019 , 9, 19253-19260	3.7	9	
43	Ultrasound-assisted extraction of bioactive alkaloids from Phellodendri amurensis cortex using deep eutectic solvent aqueous solutions. <i>New Journal of Chemistry</i> , 2020 , 44, 9172-9178	3.6	9	
42	One Step Closer to an Ideal Insensitive Energetic Molecule: 3,5-Diamino-6-hydroxy-2-oxide-4-nitropyrimidone and its Derivatives. <i>Journal of the American</i> Chemical Society, 2021 , 143, 12665-12674	16.4	9	
41	Synthesis and Properties of 3,6-Dinitropyrazolo[4,3-c]-pyrazole (DNPP) Derivatives. <i>Propellants, Explosives, Pyrotechnics</i> , 2020 , 45, 546-553	1.7	8	
40	Integrated Resistive-Capacitive Strain Sensors Based on PolymerNanoparticle Composites. <i>ACS Applied Nano Materials</i> , 2020 , 3, 4357-4366	5.6	8	
39	A dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for an efficient CD44-targeted antitumor drug delivery. <i>New Journal of Chemistry</i> , 2019 , 43, 12275-12282	3.6	8	
38	Superior High-Energy-Density Biocidal Agent Achieved with a 3D Metal-Organic Framework. <i>ACS Applied Materials & Description (Materials & Description of the Applied Materials & Description of the Applied Materials</i>	9.5	8	
37	Taming nitroformate through encapsulation with nitrogen-rich hydrogen-bonded organic frameworks. <i>Nature Communications</i> , 2021 , 12, 2146	17.4	8	
36	Rapid Cocrystallization by Exploiting Differential Solubility: An Efficient and Scalable Process toward Easily Fabricating Energetic Cocrystals. <i>Crystal Growth and Design</i> , 2020 , 20, 2129-2134	3.5	7	

35	1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. <i>Angewandte Chemie</i> , 2021 , 133, 5557-5564	3.6	7
34	Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. <i>Bioorganic Chemistry</i> , 2021 , 107, 104575	5.1	7
33	Boron based hypergolic ionic liquids: A review. <i>Green Energy and Environment</i> , 2021 , 6, 794-822	5.7	6
32	Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. <i>Journal of Molecular Liquids</i> , 2021 , 326, 115283	6	6
31	Taurine-Based Ionic Liquids for Transdermal Protein Delivery and Enhanced Anticancer Activity. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 5991-6000	8.3	6
30	Ionic-Liquid-Assisted Synthesis of N, F, and B Co-Doped CoFe 2 O 4lk on Multiwalled Carbon Nanotubes with Enriched Oxygen Vacancies for LiB Batteries. <i>Advanced Functional Materials</i> , 2022 , 32, 2111084	15.6	6
29	Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy ACS Applied Bio Materials, 2019 , 2, 4222-4232	4.1	5
28	Low-temperature sintering of silver nanoparticles on paper by surface modification. <i>Nanotechnology</i> , 2019 , 30, 505303	3.4	5
27	Ultrasound-Assisted Natural Deep Eutectic Solvents as Separation-Free Extraction Media for Hydroxytyrosol from Olives. <i>ChemistrySelect</i> , 2020 , 5, 10939-10944	1.8	5
26	MetalBrganic framework derived NiS2 hollow spheres as multifunctional reactors for synergistic regulation of polysulfide confinement and redox conversion. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 15269-15281	13	5
25	Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. <i>European Journal of Medicinal Chemistry</i> , 2021 , 222, 113628	6.8	5
24	1D Energetic Metal-Organic Framework: Sodium 6-Nitro-5-oxidopyrazolo[3,4-c][1,2,5]oxadiazol-4-ide with Good Thermal Stability. <i>ChemistrySelect</i> , 2017 , 2, 4673-4677	1.8	4
23	Azo-Group-Containing Organic Compounds as Electrode Materials in Full-Cell Lithium-Ion Batteries. <i>ChemElectroChem</i> , 2019 , 6, 5080-5085	4.3	4
22	Ionic liquids-filled patterned cavities improve transmittance of transparent and stretchable electronic polydimethylsiloxane films. <i>Journal of Materials Science</i> , 2019 , 54, 11134-11144	4.3	4
21	Synthesis and Properties of Azide-Functionalized Ionic Liquids as Attractive Hypergolic Fuels. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2122-2128	4.5	4
20	-Dinitromethyl-Functionalized 5-Amino-1,3,4-oxadiazolate Derivatives: Alternate Route, Characterization, and Property Analysis. <i>Organic Letters</i> , 2020 , 22, 4771-4775	6.2	4
19	A promising cation of 4-aminofurazan-3-carboxylic acid amidrazone in desensitizing energetic materials <i>RSC Advances</i> , 2020 , 10, 2519-2525	3.7	4
18	Extraction of Alkaloids from Coptidis Rhizoma via Betaine-Based Deep Eutectic Solvents. <i>ChemistrySelect</i> , 2020 , 5, 4973-4978	1.8	4

LIST OF PUBLICATIONS

17	High-performance joining technology for aluminium matrix composites using ultrasonic-assisted brazing. <i>Materials Science and Technology</i> , 2018 , 34, 660-663	1.5	4
16	Natural Compounds Gallic Acid Derivatives for Long-Life Li/Na Organic Batteries. <i>ChemElectroChem</i> , 2019 , 6, 4765-4772	4.3	4
15	Ionic liquid exfoliated TiCT MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of cancer <i>Journal of Materials Chemistry B</i> , 2022 ,	7.3	4
14	Ionic liquid transdermal delivery system: Progress, prospects, and challenges. <i>Journal of Molecular Liquids</i> , 2022 , 351, 118643	6	4
13	An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles <i>RSC Advances</i> , 2019 , 9, 37292-37299	3.7	3
12	Multicomponent Pt/PtTe2/NiCoTe2 embedded in ternary heteroatoms-doped carbon for efficient and pH-universal hydrogen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2021 , 884, 161042	5.7	3
11	Self-assembly of nickel: from nanoparticles to foils with tunable magnetic properties. CrystEngComm, 2019 , 21, 5317-5321	3.3	2
10	Stable Long Cycling of Small Molecular Organic Acid Electrode Materials Enabled by Nonflammable Eutectic Electrolyte. <i>Small</i> , 2021 , e2104538	11	2
9	Simultaneously enhancing redox kinetics and inhibiting the polysulfide shuttle effect using MOF-derived CoSe hollow sphere structures for advanced Li-S batteries. <i>Nanoscale</i> , 2021 , 13, 10849-108	87	2
8	Preparation of eco-friendly composite food packaging films based on gelatin and a matrine coconut acids ionic liquid. <i>New Journal of Chemistry</i> , 2021 , 45, 17222-17231	3.6	2
7	Sulfur crystallization in the cathode of lithium-sulfur battery during the charging process: A possible alternative to reduce the shuttle effect. <i>Materials Today Energy</i> , 2020 , 18, 100566	7	1
6	Template-assisted synthesis of ironlitrogen co-doped carbon hollow nanospheres for efficient oxygen reduction reaction. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 906, 116021	4.1	1
5	Novel Schiff Base-conjugated para-Aminobenzenesulfonamide Indole Hybrids as Potentially Muti-targeting Blockers against Staphylococcus aureus. <i>Asian Journal of Organic Chemistry</i> ,e202100737	3	1
4	Butyrylcholinesterase nanodepots with enhanced prophylactic and therapeutic performance for acute organophosphorus poisoning management. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 1877-1887	7.3	1
3	A Co3O4/C Composite for use as a High-Performance Lithium-Ion Battery Anode. <i>ChemistrySelect</i> , 2020 , 5, 14613-14619	1.8	
2	Response to "What Shall We Do with Computed Detonation Performance? Comment on '1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level'". <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11571	16.4	
1	Response to What Shall We Do with Computed Detonation Performance? Comment on II,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level Angewandte Chemie 2021 133 11675-11675	3.6	