List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3533615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy, 2022, 18, 2671-2685.	4.3	18
2	Platanosides, a Potential Botanical Drug Combination, Decrease Liver Injury Caused by Acetaminophen Overdose in Mice. Journal of Natural Products, 2022, 85, 1779-1788.	1.5	3
3	Aldehyde dehydrogenase-2 activation decreases acetaminophen hepatotoxicity by prevention of mitochondrial depolarization. Toxicology and Applied Pharmacology, 2020, 396, 114982.	1.3	16
4	Aldehyde dehydrogenase-2 activation by Alda-1 decreases necrosis and fibrosis after bile duct ligation in mice. Free Radical Biology and Medicine, 2019, 145, 136-145.	1.3	9
5	Role of mitochondrial depolarization and disrupted mitochondrial homeostasis in non-alcoholic steatohepatitis and fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2019, 11, 190-204.	0.8	11
6	Mitophagy in hepatocytes: Types, initiators and role in adaptive ethanol metabolism. Liver Research, 2018, 2, 125-132.	0.5	34
7	A Unifying Hypothesis Linking Hepatic Adaptations for Ethanol Metabolism to the Proinflammatory and Profibrotic Events of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2018, 42, 2072-2089.	1.4	34
8	lschemic preconditioning attenuates acute lung injury after partial liver transplantation. International Journal of Physiology, Pathophysiology and Pharmacology, 2018, 10, 83-94.	0.8	2
9	8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation. International Journal of Physiology, Pathophysiology and Pharmacology, 2017, 9, 69-83.	0.8	3
10	Ethanol and High Cholesterol Diet Causes Severe Steatohepatitis and Early Liver Fibrosis in Mice. PLoS ONE, 2016, 11, e0163342.	1.1	16
11	The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 14-27.	0.8	45
12	Disrupted Renal Mitochondrial Homeostasis after Liver Transplantation in Rats. PLoS ONE, 2015, 10, e0140906.	1.1	3
13	Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice. Journal of Hepatology, 2015, 63, 68-74.	1.8	14
14	650 Activation of Aldehyde Dehydrogenase-2 Attenuates Chronic Ethanol-Induced Steatohepatitis. Gastroenterology, 2015, 148, S-989-S-990.	0.6	2
15	Urinary ATP Synthase Subunit β Is a Novel Biomarker of Renal Mitochondrial Dysfunction in Acute Kidney Injury. Toxicological Sciences, 2015, 145, 108-117.	1.4	13
16	Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism. PLoS ONE, 2014, 9, e91308.	1.1	51
17	Dissecting the complement pathway in hepatic injury and regeneration with a novel protective strategy. Journal of Experimental Medicine, 2014, 211, 1793-1805.	4.2	67
18	Suramin Decreases Injury and Improves Regeneration of Ethanol-Induced Steatotic Partial Liver Grafts. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 417-425.	1.3	9

#	Article	IF	CITATIONS
19	Green Tea Polyphenols Stimulate Mitochondrial Biogenesis and Improve Renal Function after Chronic Cyclosporin A Treatment in Rats. PLoS ONE, 2013, 8, e65029.	1.1	59
20	Minocycline Decreases Liver Injury after Hemorrhagic Shock and Resuscitation in Mice. HPB Surgery, 2012, 2012, 1-9.	2.2	10
21	Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811. HPB Surgery, 2012, 2012, 1-13.	2.2	5
22	Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia–reperfusion. Journal of Hepatology, 2012, 56, 137-145.	1.8	51
23	Role of inducible nitric oxide synthase in mitochondrial depolarization and graft injury after transplantation of fatty livers. Free Radical Biology and Medicine, 2012, 53, 250-259.	1.3	18
24	Amphiregulin Stimulates Liver Regeneration After Small-for-Size Mouse Liver Transplantation. American Journal of Transplantation, 2012, 12, 2052-2061.	2.6	23
25	Inhibition of Sphingosine Kinase-2 Suppresses Inflammation and Attenuates Graft Injury after Liver Transplantation in Rats. PLoS ONE, 2012, 7, e41834.	1.1	34
26	NIM811 Prevents Mitochondrial Dysfunction, Attenuates Liver Injury, and Stimulates Liver Regeneration After Massive Hepatectomy. Transplantation, 2011, 91, 406-412.	0.5	39
27	Supplementation of amphiregulin improves fatty liver regeneration after partial hepatectomy (PHX): the role of câ€Jun Nâ€ŧerminal kinase (JNK) and extracellular signalâ€regulated kinases (ERK). FASEB Journal, 2011, 25, 998.10.	0.2	0
28	Inhibition of Inducible Nitric Oxide Synthase Prevents Mitochondrial Damage and Improves Survival of Steatotic Partial Liver Grafts. Transplantation, 2010, 89, 291-298.	0.5	22
29	Minocycline protects against the mitochondria permeability transition after both warm and cold ischemia-reperfusion. Hepatology, 2010, 51, 349-350.	3.6	2
30	Inhibition of transforming growth factor-β/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver Transplantation, 2010, 16, 181-190.	1.3	25
31	Inhibition of inducible nitric oxide synthase prevents graft injury after transplantation of livers from rats after cardiac death. Liver Transplantation, 2010, 16, 1267-1277.	1.3	10
32	Role of Ethanol Metabolism in Intravital Hepatic Mitochondrial Depolarization. FASEB Journal, 2010, 24, 665.7.	0.2	0
33	Mitochondrial calcium and the permeability transition in cell death. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1395-1401.	0.5	541
34	Minocycline and N-methyl-4-isoleucine cyclosporin (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition. Hepatology, 2008, 47, 236-246.	3.6	100
35	NIM811 (<i>N</i> -Methyl-4-isoleucine Cyclosporine), a Mitochondrial Permeability Transition Inhibitor, Attenuates Cholestatic Liver Injury but Not Fibrosis in Mice. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 699-706.	1.3	42
36	Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion. American Journal of Physiology - Renal Physiology, 2008, 295, G823-G832.	1.6	75

#	Article	IF	CITATIONS
37	Mitochondrial Permeability Transition in Liver Ischemia and Reperfusion: Role of c-Jun N-Terminal Kinase 2. Transplantation, 2008, 85, 1500-1504.	0.5	69
38	lschemic Preconditioning Prevents Free Radical Production and Mitochondrial Depolarization in Small-for-Size Rat Liver Grafts. Transplantation, 2008, 85, 1322-1331.	0.5	35
39	Intravital Imaging of Liver Function: Moving Beyond Microcirculation. FASEB Journal, 2007, 21, A88.	0.2	0
40	Graft Tumor Necrosis Factor Receptor-1 Protects After Mouse Liver Transplantation Whereas Host Tumor Necrosis Factor Receptor-1 Promotes Injury. Transplantation, 2006, 82, 1214-1220.	0.5	12
41	Liver Regeneration Is Suppressed in Small-for-Size Liver Grafts after Transplantation: Involvement of c-Jun N-terminal Kinase, Cyclin D1, and Defective Energy Supply. Transplantation, 2006, 82, 241-250.	0.5	64
42	Free Radical-Dependent Dysfunction of Small-for-Size Rat Liver Grafts: Prevention by Plant Polyphenols. Gastroenterology, 2005, 129, 652-664.	0.6	42
43	Free Radical-Dependent Dysfunction of Small-for-Size Rat Liver Grafts: Prevention by Plant Polyphenols. Gastroenterology, 2005, 129, 652-664.	0.6	33
44	Polyphenols from Camellia sinenesis prevent primary graft failure after transplantation of ethanol-induced fatty livers from rats. Free Radical Biology and Medicine, 2004, 36, 1248-1258.	1.3	34
45	Role of free radicals in failure of fatty liver grafts caused by ethanol. Alcohol, 2004, 34, 49-58.	0.8	10
46	L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Current Opinion in Clinical Nutrition and Metabolic Care, 2003, 6, 229-240.	1.3	296
47	Polyphenols from <i>Camellia sinenesis</i> attenuate experimental cholestasis-induced liver fibrosis in rats. American Journal of Physiology - Renal Physiology, 2003, 285, G1004-G1013.	1.6	75
48	Prevention of hepatic ischemia-reperfusion injury by green tea extract. American Journal of Physiology - Renal Physiology, 2002, 283, G957-G964.	1.6	70
49	Cu/Zn-Superoxide Dismutase Gene Attenuates Ischemia-Reperfusion Injury in the Rat Kidney. Journal of the American Society of Nephrology: JASN, 2001, 12, 2691-2700.	3.0	65
50	Gene delivery of Cu/Zn-superoxide dismutase improves graft function after transplantation of fatty livers in the rat. Hepatology, 2000, 32, 1255-1264.	3.6	78
51	Kupffer cell-derived prostaglandin E ₂ is involved in alcohol-induced fat accumulation in rat liver. American Journal of Physiology - Renal Physiology, 2000, 279, G100-G106.	1.6	111
52	Generation of lipid free radicals by adherent leukocytes from transplanted rat liver. Transplant International, 1998, 11, 353-360.	0.8	5
53	Dietary juniper berry oil minimizes hepatic reperfusion injury in the rat. Hepatology, 1998, 28, 1042-1050.	3.6	18
54	Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. American Journal of Physiology - Renal Physiology, 1998, 275, F595-F604.	1.3	79

#	Article	IF	CITATIONS
55	Generation of lipid free radicals by adherent leukocytes from transplanted rat liver. Transplant International, 1998, 11, 353-360.	0.8	3
56	Role of Free Radicals in Primary Nonfunction of Marginal Fatty Grafts from Rats Treated Acutely with Ethanol. Molecular Pharmacology, 1997, 52, 912-919.	1.0	29
57	Destruction of Kupffer cells increases survival and reduces graft injury after transplantation of fatty livers from ethanol-treated rats. Liver Transplantation, 1996, 2, 383-387.	1.9	40
58	Role of Free Radicals in Failure of Fatty Livers following Liver Transplantation and Alcoholic Liver Injury. Advances in Experimental Medicine and Biology, 1996, 387, 231-241.	0.8	6
59	A fish oil diet minimizes hepatic reperfusion injury in the low-flow, reflow liver perfusion model. Hepatology, 1995, 22, 929-935.	3.6	13