List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3533042/publications.pdf Version: 2024-02-01

ΡΗΙ CAI Ãδληλ

#	Article	IF	CITATIONS
1	Stochastic analysis of railway embankment with uncertain soil parameters using polynomial chaos expansion. Structure and Infrastructure Engineering, 2023, 19, 1425-1444.	3.7	6
2	Automatic clustering-based approach for train wheels condition monitoring. International Journal of Rail Transportation, 2023, 11, 639-664.	2.7	17
3	Calibration and validation of a freight wagon dynamic model in operating conditions based on limited experimental data. Vehicle System Dynamics, 2022, 60, 3024-3050.	3.7	15
4	Stress and permanent deformation amplification factors in subgrade induced by dynamic mechanisms in track structures. International Journal of Rail Transportation, 2022, 10, 298-330.	2.7	10
5	An approach for predicting fatigue life of CFRP retrofitted metallic structural details. International Journal of Fatigue, 2022, 154, 106557.	5.7	13
6	Online unsupervised detection of structural changes using train–induced dynamic responses. Mechanical Systems and Signal Processing, 2022, 165, 108268.	8.0	39
7	Real-Time Unsupervised Detection of Early Damage in Railway Bridges Using Traffic-Induced Responses. Structural Integrity, 2022, , 117-142.	1.4	7
8	Ballastless railway track transition zones: An embankment to tunnel analysis. Transportation Geotechnics, 2022, 33, 100728.	4.5	12
9	Calibration of the numerical model of a freight railway vehicle based on experimental modal parameters. Structures, 2022, 38, 108-122.	3.6	8
10	Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds - Part I: Running safety. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224, 104974.	3.9	20
11	Uncertainty and Track Stability: Analysis of Partial Safety Factors for High-Speed Railway Bridges. Lecture Notes in Civil Engineering, 2022, , 1216-1225.	0.4	0
12	Impact of the train-track-bridge system characteristics in the runnability of high-speed trains against crosswinds - Part II: Riding comfort. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224, 104987.	3.9	16
13	Fatigue Failure of 51CrV4 Steel Under Rotating Bending and Tensile. Structural Integrity, 2022, , 307-313.	1.4	3
14	Fatigue in Trapezoidal Leaf Springs of Suspensions in Two-Axle Wagons—An Overview and Simulation. Structural Integrity, 2022, , 97-114.	1.4	1
15	Experimental Validation of a Double-Deck Track-Bridge System under Railway Traffic. Sustainability, 2022, 14, 5794.	3.2	12
16	Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles. Automation in Construction, 2022, 139, 104324.	9.8	14
17	Railway ground-borne vibrations: Comprehensive field test development and experimental validation of prediction tools. , 2022, , 209-241.		1
18	Structural health monitoring strategy for damage detection in railway bridges using traffic induced dynamic responses. , 2022, , 389-408.		1

#	Article	IF	CITATIONS
19	Approaches for weigh-in-motion and wheel defect detection of railway vehicles. , 2022, , 183-207.		1
20	An approach for wheel flat detection of railway train wheels using envelope spectrum analysis. Structure and Infrastructure Engineering, 2021, 17, 1710-1729.	3.7	35
21	Evaluation of the train running safety under crosswinds - a numerical study on the influence of the wind speed and orientation considering the normative Chinese Hat Model. International Journal of Rail Transportation, 2021, 9, 204-231.	2.7	29
22	Fatigue Assessments of a Jacket-Type Offshore Structure Based on Static and Dynamic Analyses. Practice Periodical on Structural Design and Construction, 2021, 26, .	1.3	12
23	Probabilistic numerical evaluation of dynamic load allowance factors in steel modular bridges using a vehicle-bridge interaction model. Engineering Structures, 2021, 226, 111316.	5.3	18
24	Modelling and analysis of the dynamic response of a railway viaduct using an accurate and efficient algorithm. Engineering Structures, 2021, 226, 111308.	5.3	5
25	Experimental validation of a simplified soil-structure interaction approach for the prediction of vibrations in buildings due to railway traffic. Soil Dynamics and Earthquake Engineering, 2021, 141, 106499.	3.8	16
26	Running safety evaluation of a train moving over a high-speed railway viaduct under different track conditions. Engineering Failure Analysis, 2021, 121, 105133.	4.0	36
27	Calibration of Numerical Models of Railway Vehicles Based on Dynamic Tests. Mechanisms and Machine Science, 2021, , 201-211.	0.5	1
28	Simulation of the Dynamic Behavior of a Centenary Metallic Bridge under Metro Traffic Actions Based on Advanced Interaction Models. International Journal of Structural Stability and Dynamics, 2021, 21, 2150057.	2.4	9
29	Progressive numerical model validation of a bowstring-arch railway bridge based on a structural health monitoring system. Journal of Civil Structural Health Monitoring, 2021, 11, 421.	3.9	14
30	Influence of track foundation on the performance of ballast and concrete slab tracks under cyclic loading: Physical modelling and numerical model calibration. Construction and Building Materials, 2021, 277, 122245.	7.2	33
31	Bridge Weigh-in-Motion system for the identification of train loads using fiber-optic technology. Structures, 2021, 30, 1056-1070.	3.6	28
32	A new inverse analysis approach for predicting the fracture mode I parameters of fibre reinforced concrete. Engineering Fracture Mechanics, 2021, 246, 107613.	4.3	9
33	Railway Vehicle Wheel Flat Detection with Multiple Records Using Spectral Kurtosis Analysis. Applied Sciences (Switzerland), 2021, 11, 4002.	2.5	32
34	Damage detection in railway bridges using traffic-induced dynamic responses. Engineering Structures, 2021, 238, 112189.	5.3	52
35	Assessment of train running safety on bridges: A literature review. Engineering Structures, 2021, 241, 112425.	5.3	78
36	Vibrations induced by railway traffic in buildings: Experimental validation of a sub-structuring methodology based on 2.5D FEM-MFS and 3D FEM. Engineering Structures, 2021, 240, 112381.	5.3	13

#	Article	IF	CITATIONS
37	Influence of the railway vehicle properties in the running safety against crosswinds. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217, 104732.	3.9	18
38	A practical three-dimensional wheel-rail interaction element for dynamic response analysis of vehicle-track systems. Computers and Structures, 2021, 254, 106581.	4.4	11
39	Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems. Mechanical Systems and Signal Processing, 2021, 160, 107869.	8.0	39
40	The Master S-N curve approach for fatigue assessment of welded bridge structural details. International Journal of Fatigue, 2021, 152, 106432.	5.7	23
41	A finite element post-processor for fatigue assessment of welded structures based on the Master S-N curve method. International Journal of Fatigue, 2021, 153, 106482.	5.7	12
42	Statistical methodologies for removing the operational effects from the dynamic responses of a highâ€rise telecommunications tower. Structural Control and Health Monitoring, 2021, 28, e2700.	4.0	13
43	Train Running Safety Analysis Against Stochastically Generated Crosswinds. Mechanisms and Machine Science, 2021, , 245-261.	0.5	0
44	Calibration of the numerical model of a track section over a railway bridge based on dynamic tests. Structures, 2021, 34, 4124-4141.	3.6	10
45	Model Updating of a Freight Wagon Based on Dynamic Tests under Different Loading Scenarios. Applied Sciences (Switzerland), 2021, 11, 10691.	2.5	14
46	Distortion-Induced Fatigue Reassessment of a Welded Bridge Detail Based on Structural Stress Methods. Metals, 2021, 11, 1952.	2.3	3
47	A new strategy to estimate static loads for the dynamic weighing in motion of railway vehicles. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 183-200.	2.0	26
48	Validation of a vertical train–track–bridge dynamic interaction model based on limited experimental data. Structure and Infrastructure Engineering, 2020, 16, 181-201.	3.7	33
49	Stability of a train running over the Volga river high-speed railway bridge during crosswinds. Structure and Infrastructure Engineering, 2020, 16, 1121-1137.	3.7	45
50	A comparative study on the running safety of trains subjected to crosswinds simulated with different wind models. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207, 104398.	3.9	50
51	Dynamic analysis of the train-bridge system considering the non-linear behaviour of the track-deck interface. Engineering Structures, 2020, 220, 110980.	5.3	32
52	Remote inspection of RC structures using unmanned aerial vehicles and heuristic image processing. Engineering Failure Analysis, 2020, 117, 104813.	4.0	44
53	Mechanistic-empirical permanent deformation models: Laboratory testing, modelling and ranking. Transportation Geotechnics, 2020, 23, 100326.	4.5	37
54	Model-based damage identification of railway bridges using genetic algorithms. Engineering Failure Analysis, 2020, 118, 104845.	4.0	19

#	Article	IF	CITATIONS
55	Influence of the Double Composite Action Solution in the Behavior of a High-Speed Railway Viaduct. Journal of Bridge Engineering, 2020, 25, .	2.9	7
56	Long-term monitoring of the track–bridge interaction on an extremely skew steel arch bridge. Journal of Civil Structural Health Monitoring, 2020, 10, 377-387.	3.9	6
57	Constitutive model for fibre reinforced concrete by coupling the fibre and aggregate interlock resisting mechanisms. Cement and Concrete Composites, 2020, 111, 103618.	10.7	12
58	Fatigue crack growth modelling of Fão Bridge puddle iron under variable amplitude loading. International Journal of Fatigue, 2020, 136, 105588.	5.7	25
59	Dynamic effects on a train-bridge system caused by stochastically generated turbulent wind fields. Engineering Structures, 2020, 211, 110430.	5.3	60
60	Failure of Overhead Line Equipment (OHLE) Structure Under Hurricane. Sustainable Civil Infrastructures, 2020, , 54-63.	0.2	1
61	Influence of Track Irregularities in the Stress Levels of the Ballasted and Ballastless Tracks. Lecture Notes in Civil Engineering, 2020, , 601-612.	0.4	1
62	The renewed TC12/ESIS technical committee - Risk analysis and safety of large structures and components. Engineering Failure Analysis, 2019, 105, 798-802.	4.0	8
63	Continuous monitoring of the dynamic behavior of a high-rise telecommunications tower. Structural Design of Tall and Special Buildings, 2019, 28, e1621.	1.9	10
64	Fatigue cracking of welded railway bridges: A review. Engineering Failure Analysis, 2019, 104, 154-176.	4.0	51
65	Unitary model for the analysis of bolted connections using the finite element method. Engineering Failure Analysis, 2019, 104, 308-320.	4.0	24
66	A Stress Intensity Factor Study for a Pressure Vessel CT Specimen Using Finite Element Method. Structural Integrity, 2019, , 181-186.	1.4	2
67	Smartphone's Sensing Capabilities for On-Board Railway Track Monitoring: Structural Performance and Geometrical Degradation Assessment. Advances in Civil Engineering, 2019, 2019, 1-13.	0.7	17
68	Fatigue Crack Growth Rate of the Long Term Operated Puddle Iron from the Eiffel Bridge. Metals, 2019, 9, 53.	2.3	13
69	Influence of fillet end geometry on fatigue behaviour of welded joints. International Journal of Fatigue, 2019, 123, 196-212.	5.7	33
70	Fatigue assessment based on hot-spot stresses obtained from the global dynamic analysis and local static sub-model. International Journal of Structural Integrity, 2019, 12, 31-47.	3.3	46
71	Condition Monitoring of Overhead Line Equipment (OHLE) Structures Using Ground-Bourne Vibrations from Train Passages. Sustainable Civil Infrastructures, 2019, , 14-22.	0.2	3
72	Fatigue resistance curves for single and double shear riveted joints from old portuguese metallic bridges. Engineering Failure Analysis, 2019, 96, 255-273.	4.0	28

#	Article	IF	CITATIONS
73	Fatigue Assessment of Critical Connections in a Historic Eyebar Suspension Bridge. Journal of Performance of Constructed Facilities, 2019, 33, .	2.0	18
74	Influence of loading direction on the static and fatigue fracture properties of the long term operated metallic materials. Engineering Failure Analysis, 2019, 96, 409-425.	4.0	35
75	Globalâ€local fatigue assessment of an ancient riveted metallic bridge based on submodelling of the critical detail. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 546-560.	3.4	42
76	A comparison between S-N Logistic and Kohout-Věchet formulations applied to the fatigue data of old metallic bridges materials. Frattura Ed Integrita Strutturale, 2019, 13, 400-410.	0.9	17
77	Structural analysis of a stone arch bridge under incremental railway static loading. IABSE Symposium Report, 2019, , .	0.0	1
78	Contributions for experimental and numerical characterization of the structural behaviour of stone arch bridges. IABSE Symposium Report, 2019, , .	0.0	0
79	Experimental validation of the FE model for dynamic analysis of a composite railway viaduct's deck slab. , 2019, , .		Ο
80	Dynamic analysis of high-speed precast railway bridges. , 2019, , 1814-1818.		0
81	Running safety assessment of a high-speed train moving over the new Volga River Bridge subjected to crosswinds. , 2019, , 1785-1790.		Ο
82	Development of an efficient approach for fatigue crack initiation and propagation analysis of bridge critical details using the modal superposition technique. Engineering Failure Analysis, 2018, 89, 118-137.	4.0	20
83	Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges. Engineering Structures, 2018, 164, 169-182.	5.3	48
84	Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures, 2018, 166, 46-61.	5.3	32
85	Impact of track irregularities and damping on the fatigue damage of a railway bridge deck slab. Structure and Infrastructure Engineering, 2018, 14, 1257-1268.	3.7	19
86	Model updating of a dynamic model of a composite steel-concrete railway viaduct based on experimental tests. Engineering Structures, 2018, 164, 40-52.	5.3	50
87	Dynamic Response of a Railway Bridge to Heavy Axle-Load Trains Considering Vehicle–Bridge Interaction. International Journal of Structural Stability and Dynamics, 2018, 18, 1850010.	2.4	26
88	Calibration and experimental validation of a dynamic model of the train-track system at a culvert transition zone. Structure and Infrastructure Engineering, 2018, 14, 604-618.	3.7	12
89	Evaluation of Fatigue Design Curves for a Double-Side Welded Connection Used in Offshore Applications. , 2018, , .		7
90	Probabilistic Fatigue Crack Initiation and Propagation Fields Using the Strain Energy Density. Strength of Materials, 2018, 50, 620-635.	0.5	16

#	Article	IF	CITATIONS
91	Calibration of the Numerical Model of a Stand in Dragão Stadium Based on Genetic Algorithms. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2018, 28, 196-207.	0.8	2
92	Fatigue assessment of a high-speed railway composite steel-concrete bridge by the hot-spot stress method. International Journal of Structural Integrity, 2018, 9, 337-354.	3.3	5
93	Fatigue crack growth of 42CrMo4 and 41Cr4 steels under different heat treatment conditions. International Journal of Structural Integrity, 2018, 9, 326-336.	3.3	11
94	CINPAR2016–strengthening and repair of structures. International Journal of Structural Integrity, 2018, 9, 278-280.	3.3	2
95	Structural reliability of corroded pipeline using the so-called Separable Monte Carlo method. Journal of Strain Analysis for Engineering Design, 2018, 53, 730-737.	1.8	28
96	Aerodynamic damping in cables of overhead transmission lines subjected to wind loads. Wind Engineering, 2018, 42, 268-275.	1.9	2
97	Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects. Engineering Fracture Mechanics, 2018, 202, 423-435.	4.3	89
98	Analysis of the fatigue life estimators of the materials using small samples. Journal of Strain Analysis for Engineering Design, 2018, 53, 699-710.	1.8	21
99	A methodology for a global-local fatigue analysis of ancient riveted metallic bridges. International Journal of Structural Integrity, 2018, 9, 355-380.	3.3	10
100	Modeling of vibrations induced in tunnels: a 2.5D FEM-PML approach. Geotecnia, 2018, 144, 89-118.	0.1	4
101	Study of ground vibrations induced by railway traffic in a 3D FEM model formulated in the time domain: experimental validation. Structure and Infrastructure Engineering, 2017, 13, 652-664.	3.7	35
102	Dynamic analysis of high-speed railway bridge decks using generalised beam theory. Thin-Walled Structures, 2017, 114, 22-31.	5.3	16
103	A generalization of the fatigue Kohout-Věchet model for several fatigue damage parameters. Engineering Fracture Mechanics, 2017, 185, 284-300.	4.3	71
104	Application of the modal superposition technique combined with analytical elastoplastic approaches to assess the fatigue crack initiation on structural components. Engineering Fracture Mechanics, 2017, 185, 271-283.	4.3	16
105	Fatigue assessment of an existing steel bridge by finite element modelling and field measurements. Journal of Physics: Conference Series, 2017, 843, 012038.	0.4	8
106	Track-ground vibrations induced by railway traffic: experimental validation of a 3D numerical model. Soil Dynamics and Earthquake Engineering, 2017, 97, 324-344.	3.8	42
107	Generalized probabilistic model allowing for various fatigue damage variables. International Journal of Fatigue, 2017, 100, 187-194.	5.7	112
108	Experimental assessment of the dynamic behaviour of the train-track system at a culvert transition zone. Engineering Structures, 2017, 138, 215-228.	5.3	33

#	Article	IF	CITATIONS
109	Mitigation of vibrations and re-radiated noise in buildings generated by railway traffic: a parametric study. Procedia Engineering, 2017, 199, 2627-2632.	1.2	9
110	Fatigue Strength Evaluation of Resin-Injected Bolted Connections Using Statistical Analysis. Engineering, 2017, 3, 795-805.	6.7	16
111	Fatigue Life Evaluation of Critical Details of the HercÃlio Luz Suspension Bridge. Procedia Structural Integrity, 2017, 5, 1027-1034.	0.8	6
112	Weighing-in-motion wireless system for sustainable railway transport. Energy Procedia, 2017, 136, 408-413.	1.8	7
113	MECHANICAL CHARACTERIZATION OF ANCIENT PORTUGUESE RIVETED BRIDGES STEELS. Engineering Structures and Technologies, 2017, 9, 214-225.	0.1	3
114	Probabilistic fatigue S-N curves derivation for notched components. Frattura Ed Integrita Strutturale, 2017, 11, 105-118.	0.9	19
115	Statistical analysis of fatigue crack propagation data of materials from ancient portuguese metallic bridges. Frattura Ed Integrita Strutturale, 2017, 11, 136-146.	0.9	7
116	STRUCTURAL INTEGRITY OF MATERIALS AND STRUCTURES. Engineering Structures and Technologies, 2017, 9, 157-157.	0.1	2
117	Running safety assessment of trains moving over bridges subjected to moderate earthquakes. Earthquake Engineering and Structural Dynamics, 2016, 45, 483-504.	4.4	67
118	Non-Linear Behaviour of Geomaterials in Railway Tracks under Different Loading Conditions. Procedia Engineering, 2016, 143, 1128-1135.	1.2	19
119	Application of Modal Superposition Technique in the Fatigue Analysis Using Local Approaches. Procedia Engineering, 2016, 160, 45-52.	1.2	7
120	Novel Efficient Technologies in Europe for Axle Bearing Condition Monitoring – the MAXBE Project. Transportation Research Procedia, 2016, 14, 635-644.	1.5	29
121	Experimental analysis of track-ground vibrations on a stretch of the Portuguese railway network. Soil Dynamics and Earthquake Engineering, 2016, 90, 358-380.	3.8	43
122	A contribution for integrated analysis of railway track performance at transition zones and other discontinuities. Construction and Building Materials, 2016, 111, 699-709.	7.2	22
123	Calibration of the numerical model of a stone masonry railway bridge based on experimentally identified modal parameters. Engineering Structures, 2016, 123, 354-371.	5.3	61
124	Design recommendations for reinforced concrete interfaces based on statistical and probabilistic methods. Structural Concrete, 2016, 17, 811-823.	3.1	12
125	A numerical study on the influence of backfill settlements in the train/track interaction at transition zones to railway bridges. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 866-878.	2.0	35
126	Probabilistic assessment of the train running safety on a short-span high-speed railway bridge. Structure and Infrastructure Engineering, 2016, 12, 78-92.	3.7	35

#	Article	IF	CITATIONS
127	Push-Off Tests in the Study of Cyclic Behavior of Interfaces between Concretes Cast at Different Times. Journal of Structural Engineering, 2016, 142, 04015101.	3.4	22
128	A probabilistic analysis of Miner's law for different loading conditions. Structural Engineering and Mechanics, 2016, 60, 71-90.	1.0	43
129	Probabilistic S-N Field Assessment for a Notched Plate Made of Puddle Iron From the Eiffel Bridge with an Elliptical Hole. Procedia Engineering, 2015, 114, 691-698.	1.2	7
130	Measurement of the Dynamic Displacements of Railway Bridges Using Video Technology. MATEC Web of Conferences, 2015, 24, 02007.	0.2	1
131	Fatigue Damage Assessment of a Riveted Connection Made of Puddle Iron from the Fão Bridge using the Modified Probabilistic Interpretation Technique. Procedia Engineering, 2015, 114, 760-767.	1.2	9
132	On-line monitoring system for tracks. , 2015, , .		6
133	Weighing in motion and wheel defect detection of rolling stock. , 2015, , .		6
134	A numerical method to predict the riding comfort induced by foundation construction close to a high-speed-line bridge. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 553-564.	2.0	7
135	Modelling probabilistic fatigue crack propagation rates for a mild structural steel. Frattura Ed Integrita Strutturale, 2015, 9, 80-96.	0.9	10
136	Abatement of railway induced vibrations: Numerical comparison of trench solutions. Engineering Analysis With Boundary Elements, 2015, 55, 122-139.	3.7	19
137	The effect of differential settlements on the dynamic response of the train–track system: A numerical study. Engineering Structures, 2015, 88, 216-224.	5.3	56
138	Design and construction of backfills for railway track transition zones. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 58-70.	2.0	65
139	Efficient methodology for the probabilistic safety assessment of high-speed railway bridges. Engineering Structures, 2015, 101, 138-149.	5.3	30
140	Calibration of Dynamic Models of Railway Bridges Based on Genetic Algorithms. Computational Methods in Applied Sciences (Springer), 2015, , 83-103.	0.3	0
141	Wheel–rail contact formulation for analyzing the lateral train–structure dynamic interaction. Computers and Structures, 2015, 152, 200-214.	4.4	72
142	Under sleeper pads in transition zones at railway underpasses: numerical modelling and experimental validation. Structure and Infrastructure Engineering, 2015, 11, 1432-1449.	3.7	44
143	Calibration of the Numerical Model of a Short-span Masonry Railway Bridge Based on Experimental Modal Parameters. Procedia Engineering, 2015, 114, 846-853.	1.2	17
144	An efficient methodology for fatigue damage assessment of bridge details using modal superposition of stress intensity factors. International Journal of Fatigue, 2015, 81, 61-77.	5.7	33

#	Article	IF	CITATIONS
145	Formulation of the boundary element method in the wavenumber–frequency domain based on the thin layer method. Computers and Structures, 2015, 161, 1-16.	4.4	6
146	Evaluation of the Performance of Different Damage Indicators in Railway Bridges. Procedia Engineering, 2015, 114, 746-753.	1.2	20
147	Critical speed of railway tracks. Detailed and simplified approaches. Transportation Geotechnics, 2015, 2, 30-46.	4.5	81
148	On the use of under sleeper pads in transition zones at railway underpasses: experimental field testing. Structure and Infrastructure Engineering, 2015, 11, 112-128.	3.7	37
149	Dynamic monitoring of railway track displacement using an optical system. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 229, 280-290.	2.0	21
150	Numerical evaluation of the non-linear behaviour of cracked RC members under variable-amplitude cyclic loading. Materials and Structures/Materiaux Et Constructions, 2015, 48, 2815-2838.	3.1	5
151	A Dynamic Vehicle-Track Interaction Model for Predicting the Track Degradation Process. Journal of Infrastructure Systems, 2014, 20, .	1.8	25
152	Updating and validation of the dynamic model of a railway viaduct with precast deck. Structure and Infrastructure Engineering, 2014, 10, 1484-1509.	3.7	30
153	A direct method for analyzing the nonlinear vehicle–structure interaction. Engineering Structures, 2014, 69, 83-89.	5.3	48
154	Non-contact measurement of the dynamic displacement of railway bridges using an advanced video-based system. Engineering Structures, 2014, 75, 164-180.	5.3	194
155	Transition zones to railway bridges: Track measurements and numerical modelling. Engineering Structures, 2014, 80, 435-443.	5.3	83
156	Influence of soil stiffness on building vibrations due to railway traffic in tunnels: Numerical study. Computers and Geotechnics, 2014, 61, 277-291.	4.7	59
157	Numerical modeling of vibrations induced by railway traffic in tunnels: From the source to the nearby buildings. Soil Dynamics and Earthquake Engineering, 2014, 61-62, 269-285.	3.8	150
158	Stress wave propagation test and numerical modelling of an underground complex. International Journal of Rock Mechanics and Minings Sciences, 2014, 72, 26-36.	5.8	15
159	Probabilistic safety assessment of a short span high-speed railway bridge. Engineering Structures, 2014, 71, 99-111.	5.3	70
160	Numerical Modelling of Railway Bridge Approaches: Influence of Soil Non-Linearity. International Journal of Railway Technology, 2014, 3, 73-95.	0.3	15
161	A NONLINEAR VEHICLE STRUCTURE INTERACTION METHODOLOGY WITH WHEEL RAIL DETACHMENT AND REATTACHMENT. , 2014, , .		5
162	On the fatigue behavior of precast concrete bridge decks in high-speed railway lines. , 2014, , 1660-1665.		0

#	Article	IF	CITATIONS
163	Efficient methodology for the safety assessment of a short span railway bridge under high-speed traffic. , 2014, , 1580-1587.		0
164	Finite-element model calibration of a railway vehicle based on experimental modal parameters. Vehicle System Dynamics, 2013, 51, 821-856.	3.7	75
165	New Methodology for Calculation of Required Prestressing Levels in Continuous Precast Bridge Decks. Journal of Bridge Engineering, 2013, 18, 1219-1226.	2.9	1
166	Fatigue analysis of box-girder webs subjected to in-plane shear and transverse bending induced by railway traffic. Engineering Structures, 2013, 54, 248-261.	5.3	18
167	A NEW METHODOLOGY FOR EVALUATING THE SAFE TEMPERATURE IN CONTINUOUS WELDED RAIL TRACKS. International Journal of Structural Stability and Dynamics, 2013, 13, 1350016.	2.4	14
168	Train-bridge interaction influence on the safety of a short span railway bridge. , 2013, , .		0
169	Fatigue analysis of a railway bridge deck slab considering the influence of simultaneous train crossings. , 2013, , .		0
170	Railway Track Transition Zones: Design, Construction, Monitoring and Numerical Modelling. International Journal of Railway Technology, 2013, 2, 33-58.	0.3	30
171	Fatigue crack propagation behaviour in thick steel weldments. International Journal of Structural Integrity, 2012, 3, 184-203.	3.3	11
172	Influence of train dynamic modelling strategy on the prediction of track–ground vibrations induced by railway traffic. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2012, 226, 434-450.	2.0	65
173	Ballast mats for the reduction of railway traffic vibrations. Numerical study. Soil Dynamics and Earthquake Engineering, 2012, 42, 137-150.	3.8	109
174	Integer Programming to Optimize Tamping in Railway Tracks as Preventive Maintenance. Journal of Transportation Engineering, 2012, 138, 123-131.	0.9	67
175	Efficient crack analysis of dynamically loaded structures using a modal superposition of stress intensity factors. Engineering Fracture Mechanics, 2012, 93, 75-91.	4.3	9
176	A direct method for analyzing the vertical vehicle–structure interaction. Engineering Structures, 2012, 34, 414-420.	5.3	71
177	Safety assessment of a short span railway bridge for high-speed traffic using simulation techniques. Engineering Structures, 2012, 40, 141-154.	5.3	47
178	Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters. Engineering Structures, 2012, 40, 413-435.	5.3	159
179	Track–ground vibrations induced by railway traffic: In-situ measurements and validation of a 2.5D FEM-BEM model. Soil Dynamics and Earthquake Engineering, 2012, 32, 111-128.	3.8	182
180	Train-bridge interaction effects on the dynamic response of a small span high-speed railway bridge. Bridge Maintenance, Safety and Management, 2012, , 1718-1725.	0.1	2

#	Article	IF	CITATIONS
181	Simplified and detailed calculations of long-term stress redistributions in continuous precast bridge decks. Bridge Maintenance, Safety and Management, 2012, , 3849-3855.	0.1	0
182	An investigation on stress wave propagation in micromechanical models of rock. , 2011, , 1253-1258.		3
183	Dynamic response variability of a small span bridge for high speed rail traffic. , 2011, , 2974-2980.		0
184	Micromechanical Modelling of Stress Waves in Rock and Rock Fractures. Rock Mechanics and Rock Engineering, 2010, 43, 741-761.	5.4	45
185	Influence of soil non-linearity on the dynamic response of high-speed railway tracks. Soil Dynamics and Earthquake Engineering, 2010, 30, 221-235.	3.8	144
186	Hybrid Fiber-Optic/Electrical Measurement System for Characterization of Railway Traffic and Its Effects on a Short Span Bridge. IEEE Sensors Journal, 2008, 8, 1243-1249.	4.7	20
187	Experimental Validation of a Numerical Model for the Dynamic Analysis of a Bowstring Arch Railway Bridge. , 2008, , .		0
188	Characterization of railway traffic and its effects on a short span bridge by using a hybrid fibre optic/electrical measurement system. , 2007, 6619, 624.		2
189	Fatigue assessment of composite bridges in high speed railway lines including resonance phenomena. IABSE Symposium Report, 2007, , .	0.0	Ο
190	Dynamic effects induced by abrupt changes in track stiffness in high speed railway lines. , 2007, , .		1
191	Simplified numerical model for the prediction of train induced vibrations in the vicinity of high speed rail lines. , 2007, , .		0
192	Analytical models for dynamic analysis of track for high speed trains. , 2007, , .		0
193	Analysis of Traffic-Induced Vibrations in a Cable-Stayed Bridge. Part II: Numerical Modeling and Stochastic Simulation. Journal of Bridge Engineering, 2005, 10, 386-397.	2.9	21
194	Analysis of Traffic-Induced Vibrations in a Cable-Stayed Bridge. Part I: Experimental Assessment. Journal of Bridge Engineering, 2005, 10, 370-385.	2.9	24
195	Dynamic measurements on bridges: design, rehabilitation and monitoring. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2003, 156, 135-148.	0.6	7
196	Dynamic Analysis of Metallic Arch Railway Bridge. Journal of Bridge Engineering, 2002, 7, 214-222.	2.9	41
197	Fatigue Crack Propagation Behavior of the Welded Steel of a Railway Bridge. Materials Science Forum, 0, 730-732, 787-792.	0.3	2
198	AVALIAÇÃO EXPERIMENTAL DOS EFEITOS DINÃ,MICOS DA AÇÃO DO VENTO EM UMA TORRE DE TELECOMUNICAÇÕES DE ELEVADA ALTURA. Anais Do Congresso Ibero-Latino-Americano De Métodos Computacionais Em Engenharia, 0, , .	0.0	1

#	Article	IF	CITATIONS
199	Global and Local Dynamic Effects on a Railway Viaduct with Precast Deck. , 0, , .		7
200	Dynamic Behaviour of a Short Span Filler-Beam Railway Bridge under High Speed Traffic. , 0, , .		3
201	Dynamic Response of a Coupled Vehicle-Track System to Real Longitudinal Rail Profiles. , 0, , .		Ο
202	Implementation of a Three-Dimensional Time Domain Formulation for the Prediction of Vehicle Induced Vibrations. , 0, , .		0
203	Modelling of Vibrations in Tunnels using the Finite Element Method with Perfectly Matched Layers. , 0, , .		0
204	Efficiency of Ballast Mats for the Reduction of Vibrations Induced by Traffic: A Parametric Study. , 0, , .		0
205	A Wheel-Rail Contact Model Pre-Processor for Train-Structure Dynamic Interaction Analysis. , 0, , .		0