
Marta Axelstad Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicology Letters, 2022, 354, 44-55.	0.4	12
2	Developmental exposure to the DE-71 mixture of polybrominated diphenyl ether (PBDE) flame retardants induce a complex pattern of endocrine disrupting effects in rats. PeerJ, 2022, 10, e12738.	0.9	8
3	Using alternative test methods to predict endocrine disruption and reproductive adverse outcomes: do we have enough knowledge?. Environmental Pollution, 2022, 304, 119242.	3.7	14
4	PFOS-induced thyroid hormone system disrupted rats display organ-specific changes in their transcriptomes. Environmental Pollution, 2022, 305, 119340.	3.7	22
5	Adult female rats perinatally exposed to perfluorohexane sulfonate (PFHxS) and a mixture of endocrine disruptors display increased body/fat weights without a transcriptional footprint in fat cells. Toxicology Letters, 2021, 339, 78-87.	0.4	3
6	Testing for heterotopia formation in rats after developmental exposure to selected inÂvitro inhibitors of thyroperoxidase. Environmental Pollution, 2021, 283, 117135.	3.7	19
7	On the Use and Interpretation of Areola/Nipple Retention as a Biomarker for Anti-androgenic Effects in Rat Toxicity Studies. Frontiers in Toxicology, 2021, 3, 730752.	1.6	8
8	Quantitative <i>in Vitro</i> to <i>in Vivo</i> Extrapolation (QIVIVE) for Predicting Reduced Anogenital Distance Produced by Anti-Androgenic Pesticides in a Rodent Model for Male Reproductive Disorders. Environmental Health Perspectives, 2020, 128, 117005.	2.8	16
9	Using assessment criteria for pesticides to evaluate the endocrine disrupting potential of non-pesticide chemicals: Case butylparaben. Environment International, 2020, 144, 105996.	4.8	11
10	Grouping of endocrine disrupting chemicals for mixture risk assessment – Evidence from a rat study. Environment International, 2020, 142, 105870.	4.8	20
11	Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology, 2020, 161,	1.4	38
12	Evaluating thyroid hormone disruption: investigations of long-term neurodevelopmental effects in rats after perinatal exposure to perfluorohexane sulfonate (PFHxS). Scientific Reports, 2020, 10, 2672.	1.6	43
13	Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project. International Journal of Molecular Sciences, 2020, 21, 3123.	1.8	34
14	Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Archives of Toxicology, 2019, 93, 253-272.	1.9	124
15	Validation of endogenous reference genes in rat cerebral cortex for RT-qPCR analyses in developmental toxicity studies. PeerJ, 2019, 7, e7181.	0.9	11
16	Perfluorohexane Sulfonate (PFHxS) and a Mixture of Endocrine Disrupters Reduce Thyroxine Levels and Cause Antiandrogenic Effects in Rats. Toxicological Sciences, 2018, 163, 579-591.	1.4	52
17	Effects on metabolic parameters in young rats born with low birth weight after exposure to a mixture of pesticides. Scientific Reports, 2018, 8, 305.	1.6	13
18	Combined exposure to low doses of pesticides causes decreased birth weights in rats. Reproductive Toxicology, 2017, 72, 97-105.	1.3	26

#	Article	IF	CITATIONS
19	Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging. Reproductive Toxicology, 2016, 61, 186-194.	1.3	66
20	Differential Gene Expression Patterns in Developing Sexually Dimorphic Rat Brain Regions Exposed to Antiandrogenic, Estrogenic, or Complex Endocrine Disruptor Mixtures: Glutamatergic Synapses as Target. Endocrinology, 2015, 156, 1477-1493.	1.4	33
21	Mixtures of endocrine-disrupting contaminants induce adverse developmental effects in preweaning rats. Reproduction, 2014, 147, 489-501.	1.1	51
22	Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters. Reproduction, 2014, 147, 465-476.	1.1	50
23	Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction, 2014, 147, 477-487.	1.1	90
24	Effects of perinatal ethinyl estradiol exposure in male and female Wistar rats. Reproductive Toxicology, 2013, 42, 180-191.	1.3	26
25	Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food and Chemical Toxicology, 2013, 59, 534-540.	1.8	75
26	In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicology and Applied Pharmacology, 2013, 272, 757-766.	1.3	47
27	Adverse effects on sexual development in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reproductive Toxicology, 2012, 34, 261-274.	1.3	85
28	Persistent developmental toxicity in rat offspring after low dose exposure to a mixture of endocrine disrupting pesticides. Reproductive Toxicology, 2012, 34, 237-250.	1.3	82
29	Effects of pre- and postnatal exposure to the UV-filter Octyl Methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicology and Applied Pharmacology, 2011, 250, 278-290.	1.3	96
30	Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reproductive Toxicology, 2011, 31, 200-209.	1.3	140
31	Exposure to the Widely Used Fungicide Mancozeb Causes Thyroid Hormone Disruption in Rat Dams but No Behavioral Effects in the Offspring. Toxicological Sciences, 2011, 120, 439-446.	1.4	96
32	Low-dose perinatal exposure to di(2-ethylhexyl) phthalate induces anti-androgenic effects in male rats. Reproductive Toxicology, 2010, 30, 313-321.	1.3	132
33	Synergistic Disruption of External Male Sex Organ Development by a Mixture of Four Antiandrogens. Environmental Health Perspectives, 2009, 117, 1839-1846.	2.8	184
34	Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology, 2008, 250, 75-81.	2.0	151
35	Developmental neurotoxicity of Propylthiouracil (PTU) in rats: Relationship between transient hypothyroxinemia during development and long-lasting behavioural and functional changes. Toxicology and Applied Pharmacology, 2008, 232, 1-13.	1.3	68
36	Endocrine-Disrupting Activities In Vivo of the Fungicides Tebuconazole and Epoxiconazole. Toxicological Sciences, 2007, 100, 464-473.	1.4	212

#	Article	IF	CITATIONS
37	Dysgenesis and Histological Changes of Genitals and Perturbations of Gene Expression in Male Rats after In Utero Exposure to Antiandrogen Mixtures. Toxicological Sciences, 2007, 98, 87-98.	1.4	77
38	Combined Exposure to Anti-Androgens Exacerbates Disruption of Sexual Differentiation in the Rat. Environmental Health Perspectives, 2007, 115, 122-128.	2.8	259
39	Diisobutyl phthalate has comparable anti-androgenic effects to di-n-butyl phthalate in fetal rat testis. Toxicology Letters, 2006, 163, 183-190.	0.4	170
40	Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicology and Applied Pharmacology, 2006, 213, 160-171.	1.3	103