
Brian W Dymock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor. European Journal of Medicinal Chemistry, 2019, 184, 111755.	5.5	15
2	Intranasal administration of a stapled relaxinâ€3 mimetic has anxiolytic―and antidepressantâ€like activity in rats. British Journal of Pharmacology, 2019, 176, 3899-3923.	5.4	15
3	Prodrugs of the cancer cell selective anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131) are orally efficacious in a mouse model of resistant colon cancer. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 216-219.	2.2	3
4	Design and synthesis of triple inhibitors of janus kinase (JAK), histone deacetylase (HDAC) and Heat Shock Protein 90 (HSP90). Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1357-1362.	2.2	21
5	A Small Molecule Targeting the Transmembrane Domain of Death Receptor p75NTR Induces Melanoma Cell Death and Reduces Tumor Growth. Cell Chemical Biology, 2018, 25, 1485-1494.e5.	5.2	20
6	Design and synthesis of potent dual inhibitors of JAK2 and HDAC based on fusing the pharmacophores of XL019 and vorinostat. European Journal of Medicinal Chemistry, 2018, 158, 593-619.	5.5	33
7	Merging of ruxolitinib and vorinostat leads to highly potent inhibitors of JAK2 and histone deacetylase 6 (HDAC6). Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2636-2640.	2.2	15
8	SAHA and cisplatin sensitize gastric cancer cells to doxorubicin by induction of DNA damage, apoptosis and perturbation of AMPK-mTOR signalling. Experimental Cell Research, 2018, 370, 283-291.	2.6	18
9	Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131). European Journal of Medicinal Chemistry, 2018, 156, 344-367.	5.5	12
10	CHAPTER 5. Small Molecule Macrocyclic Kinase Inhibitors. RSC Drug Discovery Series, 2018, , 97-127.	0.3	2
11	Discovery of medium ring thiophosphorus based heterocycles as antiproliferative agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 967-972.	2.2	9
12	Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	25
13	Analysis of Protein Target Interactions of Synthetic Mixtures by Affinity-LC/MS. SLAS Discovery, 2017, 22, 440-446.	2.7	8
14	Design and Synthesis of Ligand Efficient Dual Inhibitors of Janus Kinase (JAK) and Histone Deacetylase (HDAC) Based on Ruxolitinib and Vorinostat. Journal of Medicinal Chemistry, 2017, 60, 8336-8357.	6.4	82
15	Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality. Nature Communications, 2017, 8, 2200.	12.8	63
16	Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death. Frontiers in Pharmacology, 2017, 8, 763.	3.5	25
17	Bortezomib Warhead-Switch Confers Dual Activity against Mycobacterial Caseinolytic Protease and Proteasome and Selectivity against Human Proteasome. Frontiers in Microbiology, 2017, 8, 746.	3.5	19
18	Fragment-Based Whole Cell Screen Delivers Hits against M. tuberculosis and Non-tuberculous Mycobacteria. Frontiers in Microbiology, 2016, 7, 1392.	3.5	20

#	Article	IF	CITATIONS
19	Predicting chemotherapeutic drug combinations through gene network profiling. Scientific Reports, 2016, 6, 18658.	3.3	24
20	Overcoming Chloroquine Resistance in Malaria: Design, Synthesis, and Structure-Activity Relationships of Novel Hybrid Compounds. Antimicrobial Agents and Chemotherapy, 2016, 60, 3076-3089.	3.2	11
21	Overcoming chloroquine resistance in malaria: Design, synthesis and structure–activity relationships of novel chemoreversal agents. European Journal of Medicinal Chemistry, 2016, 119, 231-249.	5.5	14
22	The rise of epigenetic drug discovery. Future Medicinal Chemistry, 2016, 8, 1523-1524.	2.3	5
23	Antioxidants inhibit neuronal toxicity in Parkinson's diseaseâ€linked LRRK 2. Annals of Clinical and Translational Neurology, 2016, 3, 288-294.	3.7	36
24	Design and Synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) Bispecific Inhibitors Based on Pacritinib and Evidence of Dual Pathway Inhibition in Hematological Cell Lines. Journal of Medicinal Chemistry, 2016, 59, 8233-8262.	6.4	78
25	Recently discovered EZH2 and EHMT2 (G9a) inhibitors. Future Medicinal Chemistry, 2016, 8, 1635-1654.	2.3	24
26	Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides, 2016, 84, 44-57.	2.4	17
27	A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacological Research, 2016, 113, 533-546.	7.1	51
28	Mutation of histone H3 serine 86 disrupts GATA factor Ams2 expression and precise chromosome segregation in fission yeast. Scientific Reports, 2015, 5, 14064.	3.3	21
29	GYY4137, a Novel Water-Soluble, H2S-Releasing Molecule. Methods in Enzymology, 2015, 554, 143-167.	1.0	84
30	Discovery of New H ₂ S Releasing Phosphordithioates and 2,3-Dihydro-2-phenyl-2-sulfanylenebenzo[<i>d</i>][1,3,2]oxazaphospholes with Improved Antiproliferative Activity. Journal of Medicinal Chemistry, 2015, 58, 6456-6480.	6.4	71
31	Fluorescent Probes for H2S Detection and Quantification. Handbook of Experimental Pharmacology, 2015, 230, 291-323.	1.8	9
32	Hydrogen Sulfide Promotes Adipogenesis in 3T3L1 Cells. PLoS ONE, 2015, 10, e0119511.	2.5	56
33	Selective JAK inhibitors. Future Medicinal Chemistry, 2014, 6, 1439-1471.	2.3	32
34	Hydrogen Sulfide Is an Endogenous Regulator of Aging in <i>Caenorhabditis elegans</i> . Antioxidants and Redox Signaling, 2014, 20, 2621-2630.	5.4	79
35	Structure and Ligand-Based Design of mTOR and PI3-Kinase Inhibitors Leading to the Clinical Candidates VS-5584 (SB2343) and SB2602. Journal of Chemical Information and Modeling, 2014, 54, 3238-3250.	5.4	24
36	VS-5584, a Novel and Highly Selective PI3K/mTOR Kinase Inhibitor for the Treatment of Cancer. Molecular Cancer Therapeutics, 2013, 12, 151-161.	4.1	59

#	Article	IF	CITATIONS
37	Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3). Journal of Molecular Modeling, 2013, 19, 119-130.	1.8	32
38	Inhibitors of JAK2 and JAK3: an update on the patent literature 2010 – 2012. Expert Opinion on Therapeutic Patents, 2013, 23, 449-501.	5.0	51
39	SB1578, a Novel Inhibitor of JAK2, FLT3, and c-Fms for the Treatment of Rheumatoid Arthritis. Journal of Immunology, 2012, 189, 4123-4134.	0.8	31
40	Discovery of Kinase Spectrum Selective Macrocycle (16 <i>E</i>)-14-Methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8 (SB1317/TG02), a Potent Inhibitor of Cyclin Dependent Kinases (CDKs), Janus Kinase 2 (JAK2), and Fms-like Tyrosine Kinase-3 (FLT3) for the Treatment of Cancer. Journal of Medicinal Chemistry, 2012, 55, 169-196.	(27),9,11, 6.4	16,21,23-deca
41	TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia, 2012, 26, 236-243.	7.2	110
42	Discovery of the Macrocycle (9 <i>E</i>)-15-(2-(Pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexa (SB1578), a Potent Inhibitor of Janus Kinase 2/Fms-LikeTyrosine Kinase-3 (JAK2/FLT3) for the Treatment of Rheumatoid Arthritis. Journal of Medicinal Chemistry, 2012, 55, 2623-2640.	cosa-1(24) 6.4	,2,4,9,14(26), 41
43	Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Journal of Computer-Aided Molecular Design, 2012, 26, 437-450.	2.9	33
44	Structure-based design of PDK1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 305-307.	2.2	11
45	Structure-based optimization of morpholino-triazines as PI3K and mTOR inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1009-1013.	2.2	16
46	2-Anilino-4-aryl-8H-purine derivatives as inhibitors of PDK1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2880-2884.	2.2	9
47	Thieno[3,2-d]pyrimidin-4(3H)-one derivatives as PDK1 inhibitors discovered by fragment-based screening. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4023-4027.	2.2	8
48	Discovery of the Macrocycle 11-(2-Pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3 (SB1518), a Potent Janus Kinase 2/Fms-Like Tyrosine Kinase-3 (JAK2/FLT3) Inhibitor for the Treatment of Myelofibrosis and Lymphoma. Journal of Medicinal Chemistry, 2011, 54, 4638-4658.	},5,8,10,12	2(27),16,21,23 163
49	Discovery of (2 <i>E</i>)-3-{2-Butyl-1-[2-(diethylamino)ethyl]-1 <i>H</i> -benzimidazol-5-yl}- <i>N</i> -hydroxyacrylamide (SB939), an Orally Active Histone Deacetylase Inhibitor with a Superior Preclinical Profile. Journal of Medicinal Chemistry. 2011, 54, 4694-4720.	6.4	82
50	SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia, 2011, 25, 1751-1759.	7.2	162
51	New patented histone deacetylase inhibitors. Expert Opinion on Therapeutic Patents, 2009, 19, 1727-1757.	5.0	55
52	DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 894-899.	2.2	70
53	Combining Hit Identification Strategies: Fragment-Based and in Silico Approaches to Orally Active 2-Aminothieno[2,3- <i>d</i>]pyrimidine Inhibitors of the Hsp90 Molecular Chaperone. Journal of Medicinal Chemistry, 2009, 52, 4794-4809.	6.4	157
54	Arylsulfonamide CB2 receptor agonists: SAR and optimization of CB2 selectivity. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1725-1729.	2.2	31

BRIAN W DYMOCK

#	Article	IF	CITATIONS
55	4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. Journal of Medicinal Chemistry, 2008, 51, 196-218.	6.4	386
56	NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis. Cancer Research, 2008, 68, 2850-2860.	0.9	433
57	Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Molecular Cancer Therapeutics, 2007, 6, 1198-1211.	4.1	141
58	SB1518: A Potent and Orally Active JAK2 Inhibitor for the Treatment of Myeloproliferative Disorders Blood, 2007, 110, 538-538.	1.4	8
59	SB1317, a Potent and Orally Active FLT3-CDK Inhibitor with High Anti-Tumor Efficacy in Models of Hematological Malignancies Blood, 2007, 110, 1593-1593.	1.4	2
60	4-Amino derivatives of the Hsp90 inhibitor CCT018159. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2543-2548.	2.2	79
61	A fluorescence polarization assay for inhibitors of Hsp90. Analytical Biochemistry, 2006, 350, 202-213.	2.4	81
62	Preclinical pharmacokinetics and metabolism of a novel diaryl pyrazole resorcinol series of heat shock protein 90 inhibitors. Molecular Cancer Therapeutics, 2006, 5, 1628-1637.	4.1	37
63	3-(5-chloro-2,4-dihydroxyphenyl)-Pyrazole-4-carboxamides as inhibitors of the Hsp90 molecular chaperone. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5197-5201.	2.2	83
64	Novel, Potent Small-Molecule Inhibitors of the Molecular Chaperone Hsp90 Discovered through Structure-Based Design. Journal of Medicinal Chemistry, 2005, 48, 4212-4215.	6.4	232
65	Adenine Derived Inhibitors of the Molecular Chaperone HSP90—SAR Explained Through Multiple X-Ray Structures ChemInform, 2004, 35, no.	0.0	0
66	Adenine derived inhibitors of the molecular chaperone HSP90—SAR explained through multiple X-ray structures. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 325-328.	2.2	69
67	Structure-Activity Relationships in Purine-Based Inhibitor Binding to HSP90 Isoforms. Chemistry and Biology, 2004, 11, 775-785.	6.0	244
68	Inhibitors of HSP90 and other chaperones for the treatment of cancer. Expert Opinion on Therapeutic Patents, 2004, 14, 837-847.	5.0	46
69	Design and Characterization of Libraries of Molecular Fragments for Use in NMR Screening against Protein Targets. Journal of Chemical Information and Computer Sciences, 2004, 44, 2157-2166.	2.8	139
70	Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2895-2898.	2.2	48
71	Emerging therapies for hepatitis C virus infection. Expert Opinion on Emerging Drugs, 2001, 6, 13-42.	1.1	58
72	Novel Approaches to the Treatment of Hepatitis C Virus Infection. Antiviral Chemistry and Chemotherapy, 2000, 11, 79-86.	0.6	62

5

BRIAN W DYMOCK

#	Article	IF	CITATIONS
73	Novel squalestatin derivatives arising from reactions at the allylic centre of the C1-side chain. Journal of the Chemical Society Perkin Transactions 1, 1998, , 327-334.	0.9	6
74	A Synthesis of the Hypocholesterolemic Agent 1233A Via Asymmetric [2 + 2] Cycloaddition. Synthesis, 1998, 1655-1661.	2.3	37
75	The Squalestatins:Â Decarboxy and 4-Deoxy Analogues as Potent Squalene Synthase Inhibitors1. Journal of Medicinal Chemistry, 1996, 39, 207-216.	6.4	24
76	3-(Trimethylsilyl)oxetan-2-ones via enantioselective [2 + 2] cycloaddition of (trimethylsilyl)ketene to aldehydes catalysed by methylaluminiomidazolines. Chemical Communications, 1996, , 1053.	4.1	40
77	The Squalestatins: Synthesis and Biological Activity of Some C3-Modified Analogs; Replacement of a Carboxylic Acid or Methyl Ester with an Isoelectronic Heterocyclic Functionality. Journal of Medicinal Chemistry, 1995, 38, 3502-3513.	6.4	14
78	The Squalestatins: Novel Inhibitors of Squalene Synthase. Enzyme Inhibitory Activities and in vivo Evaluation of C1-Modified Analogs. Journal of Medicinal Chemistry, 1994, 37, 3274-3281.	6.4	22