
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532438/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. European Journal of Medicinal Chemistry, 2015, 92, 387-400.	5.5	155
2	Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. European Journal of Medicinal Chemistry, 2015, 105, 156-170.	5.5	120
3	Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sciences, 2005, 76, 1953-1964.	4.3	92
4	Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3285-3289.	2.2	79
5	Syntheses of new 3-thiazolyl coumarin derivatives, inÂvitro α -glucosidase inhibitory activity, and molecular modeling studies. European Journal of Medicinal Chemistry, 2016, 122, 196-204.	5.5	78
6	Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorganic Chemistry, 2016, 64, 29-36.	4.1	75
7	Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 2017, 72, 248-255.	4.1	75
8	5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α -glucosidase and urease enzymes. Bioorganic Chemistry, 2017, 72, 21-31.	4.1	75
9	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	4.1	75
10	Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 2017, 74, 30-40.	4.1	72
11	Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorganic Chemistry, 2016, 66, 117-123.	4.1	71
12	Antioxidant properties of phenolic Schiff bases: structure–activity relationship and mechanism of action. Journal of Computer-Aided Molecular Design, 2013, 27, 951-964.	2.9	70
13	Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity. Molecules, 2014, 19, 11722-11740.	3.8	70
14	Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. European Journal of Medicinal Chemistry, 2014, 84, 731-738.	5.5	69
15	Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4155-4162.	3.0	67
16	Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 2015, 24, 1310-1324.	2.4	66
17	Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.	4.1	66
18	Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, inÂvitro α-glucosidase inhibitory activity, and in silico studies. European Journal of Medicinal Chemistry, 2017, 138, 255-272.	5.5	65

#	Article	IF	CITATIONS
19	Anthraquinones from Morinda elliptica. Phytochemistry, 1997, 45, 1723-1725.	2.9	63
20	Synthesis, <i>In vitro</i> and Docking Studies of New Flavone Ethers as <i>α</i> â€Glucosidase Inhibitors. Chemical Biology and Drug Design, 2016, 87, 361-373.	3.2	63
21	Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of β-glucuronidase inhibitors and in silico studies. Bioorganic and Medicinal Chemistry, 2015, 23, 3119-3125.	3.0	60
22	A Review of Bisindolylmethane as an Important Scaffold for Drug Discovery. Current Medicinal Chemistry, 2015, 22, 4412-4433.	2.4	59
23	Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: in silico studies and SAR predictions. MedChemComm, 2015, 6, 1826-1836.	3.4	58
24	Synthesis and biological evaluation of novel N-arylidenequinoline-3-carbohydrazides as potent β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3696-3704.	3.0	58
25	Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorganic Chemistry, 2015, 62, 83-93.	4.1	53
26	Hybrid benzothiazole analogs as antiurease agent: Synthesis and molecular docking studies. Bioorganic Chemistry, 2016, 66, 80-87.	4.1	51
27	Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 2018, 80, 36-42.	4.1	50
28	Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis. RSC Advances, 2016, 6, 33733-33742.	3.6	49
29	Synthesis of benzimidazole derivatives as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 2015, 61, 36-44.	4.1	48
30	Synthesis, α-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorganic Chemistry, 2016, 65, 100-109.	4.1	47
31	4-Phenylcoumarins from Mesua elegans with acetylcholinesterase inhibitory activity. Bioorganic and Medicinal Chemistry, 2010, 18, 7873-7877.	3.0	46
32	Anthraquinones with Antiplasmodial Activity from the Roots of Rennellia elliptica Korth. (Rubiaceae). Molecules, 2010, 15, 7218-7226.	3.8	46
33	Synthesis of 2-methoxybenzoylhydrazone and evaluation of their antileishmanial activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3463-3466.	2.2	46
34	Synthesis of novel inhibitors of β-glucuronidase based on the benzothiazole skeleton and their molecular docking studies. RSC Advances, 2016, 6, 3003-3012.	3.6	46
35	Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 2016, 65, 48-56.	4.1	45
36	Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells. Oncology Letters, 2014, 7, 1479-1484.	1.8	42

#	Article	IF	CITATIONS
37	Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7394-7404.	3.0	42
38	Synthesis, in vitro evaluation and molecular docking studies of biscoumarin thiourea as a new inhibitor of α-glucosidases. Bioorganic Chemistry, 2015, 63, 36-44.	4.1	41
39	Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors. Medicinal Chemistry Research, 2015, 24, 3166-3173.	2.4	40
40	Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorganic Chemistry, 2017, 70, 184-191.	4.1	40
41	Phenoxyacetohydrazide Schiff Bases: β-Glucuronidase Inhibitors. Molecules, 2014, 19, 8788-8802.	3.8	39
42	Dihydropyrimidones: As novel class of β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3624-3635.	3.0	39
43	Synthesis, Evaluation of Antioxidant Activity and Crystal Structure of 2,4-Dimethylbenzoylhydrazones. Molecules, 2013, 18, 10912-10929.	3.8	38
44	Synthesis, Crystal Structure, DFT Studies and Evaluation of the Antioxidant Activity of 3,4-Dimethoxybenzenamine Schiff Bases. Molecules, 2014, 19, 8414-8433.	3.8	38
45	Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorganic Chemistry, 2015, 63, 24-35.	4.1	37
46	Synthesis, in vitro \hat{I}_{\pm} -glucosidase inhibitory activity and molecular docking studies of new thiazole derivatives. Bioorganic Chemistry, 2016, 68, 245-258.	4.1	37
47	Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorganic Chemistry, 2017, 71, 192-200.	4.1	37
48	Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.	5.5	37
49	Synthesis of 4-Methoxybenzoylhydrazones and Evaluation of Their Antiglycation Activity. Molecules, 2014, 19, 1286-1301.	3.8	34
50	Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2017, 126, 1021-1033.	5.5	34
51	Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorganic Chemistry, 2017, 73, 121-127.	4.1	33
52	Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Medicinal Chemistry Research, 2016, 25, 2058-2069.	2.4	31
53	Anthraquinones from Hedyotis capitellata. Phytochemistry, 2005, 66, 1141-1147.	2.9	30
54	ldentification of bisindolylmethane–hydrazone hybrids as novel inhibitors of β-glucuronidase, DFT, and in silico SAR intimations. RSC Advances, 2016, 6, 3276-3289.	3.6	29

NOR HADIANI ISMAIL

#	Article	IF	CITATIONS
55	UV/Visible spectra of a series of natural and synthesised anthraquinones: experimental and quantum chemical approaches. SpringerPlus, 2014, 3, 233.	1.2	28
56	Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC Complementary and Alternative Medicine, 2018, 18, 31.	3.7	28
57	Inhibition of prostaglandin E2 production by synthetic minor prenylated chalcones and flavonoids: Synthesis, biological activity, crystal structure, and in silico evaluation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3826-3834.	2.2	26
58	Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β -glucuronidase inhibitors. Bioorganic Chemistry, 2017, 71, 86-96.	4.1	26
59	Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro. Molecules, 2016, 21, 1228.	3.8	25
60	Thiadiazole derivatives as New Class of β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1909-1918.	3.0	25
61	Biology-oriented drug synthesis (BIODS): InÂvitro β-glucuronidase inhibitory and in silico studies on 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives. European Journal of Medicinal Chemistry, 2017, 125, 1289-1299.	5.5	25
62	Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7211-7218.	3.0	23
63	Synthesis of indole-2-hydrazones in search of potential leishmanicidal agents. Medicinal Chemistry Research, 2014, 23, 5282-5293.	2.4	21
64	Synthesis of 2-(2-methoxyphenyl)-5-phenyl-1,3,4-oxadiazole derivatives and evaluation of their antiglycation potential. Medicinal Chemistry Research, 2016, 25, 225-234.	2.4	20
65	Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 2017, 72, 323-332.	4.1	20
66	Synthesis of 3,4,5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential. Arabian Journal of Chemistry, 2019, 12, 2973-2982.	4.9	20
67	Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorganic Chemistry, 2016, 68, 90-104.	4.1	19
68	Thiazole Based Carbohydrazide Derivatives as α-Amylase Inhibitor and Their Molecular Docking Study. Heteroatom Chemistry, 2019, 2019, 1-8.	0.7	19
69	Antiglycation and antioxidant potential of novel imidazo[4,5-b]pyridine benzohydrazones. Arabian Journal of Chemistry, 2019, 12, 3118-3128.	4.9	19
70	Morpholine hydrazone scaffold: Synthesis, anticancer activity and docking studies. Chinese Chemical Letters, 2017, 28, 607-611.	9.0	18
71	Alkaloids from Fissistigma latifolium (Dunal) Merr Molecules, 2010, 15, 4583-4588.	3.8	16
72	Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 2018, 78, 17-23.	4.1	15

NOR HADIANI ISMAIL

#	Article	IF	CITATIONS
73	Mitigation of Environmental Stress-Impacts in Plants: Role of Sole and Combinatory Exogenous Application of Glutathione. Frontiers in Plant Science, 2021, 12, 791205.	3.6	15
74	Synthesis of 2-phenyl-1H-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies. Medicinal Chemistry Research, 2017, 26, 916-928.	2.4	14
75	Synthesis, inÂvitro β -glucuronidase inhibitory potential and molecular docking studies of quinolines. European Journal of Medicinal Chemistry, 2017, 139, 849-864.	5.5	14
76	Synthesis, α-amylase inhibition and molecular docking study of bisindolylmethane sulfonamide derivatives. Medicinal Chemistry Research, 2019, 28, 2010-2022.	2.4	14
77	4-[5-(2-Methoxyphenyl)-1,3,4-oxadiazol-2-yl]benzohydrazide. MolBank, 2014, 2014, M826.	0.5	13
78	Benzimidazole derivatives protect against cytokine-induced apoptosis in pancreatic β-Cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4672-4676.	2.2	12
79	In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2016, 68, 80-89.	4.1	12
80	Nordamnacanthal potentiates the cytotoxic effects of tamoxifen in human breast cancer cells. Oncology Letters, 2015, 9, 335-340.	1.8	11
81	Volatile Components of the Stressed Liverwort Conocephalum Conicum. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	11
82	Cytotoxic lactam and naphthoquinone alkaloids from roots of Goniothalamus lanceolatus Miq Phytochemistry Letters, 2018, 24, 51-55.	1.2	11
83	Goniolanceolatins A–H, Cytotoxic Bis-styryllactones from <i>Goniothalamus lanceolatus</i> . Journal of Natural Products, 2019, 82, 2430-2442.	3.0	11
84	Synthesis of novel disulfide and sulfone hybrid scaffolds as potent β-glucuronidase inhibitor. Bioorganic Chemistry, 2016, 68, 15-22.	4.1	10
85	Rauniticine-allo-Oxindole B and Rauniticinic-allo Acid B, New Heteroyohimbine-Type Oxindole Alkaloids from the Stems of Malaysian Uncaria longiflora var. pteropoda. Molecules, 2011, 16, 6541-6548.	3.8	9
86	Synthesis, in vitro \hat{I}^2 -glucuronidase inhibitory activity and in silico studies of novel (E) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 5 4.1	0 222 Td ()-4
87	Urinary Metabolomics and Biochemical Analysis of Antihyperglycemic Effect of Ficus deltoidea Jack Varieties in Streptozotocin-Nicotinamide–Induced Diabetic Rats. Applied Biochemistry and Biotechnology, 2020, 192, 1-21.	2.9	9
88	Mitigation of H2O2-Induced Mitochondrial-Mediated Apoptosis in NG108-15 Cells by Novel Mesuagenin C fromMesua kunstleri(King) Kosterm. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-18.	1.2	8
89	3,4-Dimethoxybenzohydrazide derivatives as antiulcer: Molecular modeling and density functional studies. Bioorganic Chemistry, 2017, 75, 235-241.	4.1	7
90	Antiplasmodial Anthraquinones from Medicinal Plants: The Chemistry and Possible Mode of Actions. Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	7

#	Article	IF	CITATIONS
91	Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Molecular Diversity, 2021, 25, 995-1009.	3.9	7
92	Acclimatisation-induced stress influenced host metabolic and gut microbial composition change. Molecular BioSystems, 2015, 11, 297-306.	2.9	6
93	Design and synthesis of a novel mPGES-1 lead inhibitor guided by 3D-QSAR CoMFA. Journal of Molecular Structure, 2019, 1196, 844-850.	3.6	6
94	Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorganic Chemistry, 2020, 99, 103819.	4.1	6
95	Microbial Transformation of Bioactive Anthraquinones ? A Review. Biosciences, Biotechnology Research Asia, 2013, 10, 577-582.	0.5	6
96	(E)-4-Methoxy-N′-(3,4,5-trihydroxybenzylidene)benzohydrazide methanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2846-o2846.	0.2	5
97	In vitro antiplasmodial and cytotoxicity activities of crude extracts and major compounds from Goniothalamus lanceolatus. Journal of Ethnopharmacology, 2020, 254, 112657.	4.1	5
98	(E)-2-Methoxy-N′-(2,4,6-trihydroxybenzylidene)benzohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o277-o277.	0.2	5
99	A Comprehensive Analysis of Human CYP3A4 Crystal Structures as a Potential Tool for Molecular Docking-Based Site of Metabolism and Enzyme Inhibition Studies. Journal of Computational Biophysics and Chemistry, 2022, 21, 259-285.	1.7	5
100	N′-[(E)-2,3-Dihydroxybenzylidene]-2-methoxybenzohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3256-o3256.	0.2	4
101	(<i>E</i>)- <i>N</i> ′-(3,4-Dimethoxybenzylidene)-4-methoxybenzohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2780-o2780.	0.2	4
102	Styryl Lactones from Roots and Barks <i>Goniothalamus lanceolatus</i> . Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	4
103	1-Hydroxy-2-methoxy-6-methyl-9,10-anthraquinone fromRennellia ellipticaKorth Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1435-o1435.	0.2	3
104	Two new pyranoanthraquinones from the root of Rennellia elliptica Korth. (Rubiaceae). Phytochemistry Letters, 2016, 16, 225-229.	1.2	3
105	Synthesis of a series of new 6-nitrobenzofuran-2-carbohydrazide derivatives with cytotoxic and antioxidant activity. New Horizons in Translational Medicine, 2017, 4, 23-30.	1.0	3
106	Microbial Transformation of Some Natural and Synthetic Aromatic Compounds by Fungi: Aspergillus and Neurospora Strains. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	3
107	1,3-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o597-o597.	0.2	3
108	CHEMICAL PROFILING AND IDENTIFICATION OF ALKALOIDS AND FLAVONOIDS IN Uncaria lanosa var. ferrea VIA UHPLC-ORBITRAP MS. Malaysian Journal of Analytical Sciences, 2016, 20, 318-323.	0.1	3

#	Article	IF	CITATIONS
109	Evaluation of a Series of 9,10-Anthraquinones as Antiplasmodial Agents. Letters in Drug Design and Discovery, 2019, 16, 353-363.	0.7	3
110	(E)-2,4-Dimethyl-N′-(2-methylbenzylidene)benzohydrazide. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o400-o400.	0.2	3
111	6-[(2E)-3,7-Dimethylocta-2,6-dien-1-yl]-5,7-dihydroxy-8-(2-methylbutanoyl)-4-phenyl-2H-chromen-2-one–6-[(2E)- (1/1) fromMesua elegans. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, 0939-0940.	3,7-dimetł 0.2	hylocta-2,6- 2
112	2-{[2-(2-Hydroxy-5-methoxybenzylidene)hydrazin-1-ylidene]methyl}-4-methoxyphenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o131-o131.	0.2	2
113	Recycling HPLC for the purification of oligostilbenes from <i>Dipterocarpus semivestitus</i> and <i>Neobalanocarpus heimii</i> (Dipterocarpaceae). Journal of Liquid Chromatography and Related Technologies, 2017, 40, 943-949.	1.0	2
114	Constituents of Fermented Male Flowers of <i>Alnus sieboldiana</i> (Betulaceae). Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
115	<i>In vivo</i> Antiplasmodial and Toxicological Effects of <i>Goniothalamus lanceolatus</i> Crude Extracts. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	2
116	1,3-Dihydroxy-2-methoxymethyl-9,10-anthraquinone fromRennellia ellipticaKorth Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1433-o1434.	0.2	2
117	Blood pressure and urine metabolite changes in spontaneously hypertensive rats treated with leaf extract of Ficus deltoidea var angustifolia. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114579.	2.8	2
118	Rauniticine-allo-oxindole B methanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1345-o1345.	0.2	1
119	ANTIOXIDANT, ANTIDIABETIC AND CYTOTOXIC ACTIVITIES OF RENNELLIA ELLIPTICA KORTH Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
120	Comparative Study of the Volatile Components of Fresh and Fermented Flowers of Alnus sieboldiana (Betulaceae). Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
121	Xanthine Oxidase Inhibitory Activity of. The Open Conference Proceedings Journal, 2013, 4, 168-168.	0.6	1
122	2-Formyl-3-hydroxy-9,10-anthroquinone. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o2164-o2164.	0.2	1
123	A REVIEW ON THE CHEMISTRY AND PHARMACOLOGY OF Rennellia elliptica Korth. Indonesian Journal of Tropical and Infectious Disease, 2017, 6, 131.	0.1	1
124	1-(1,8-Dihydroxy-6-methoxy-3-methylnaphthalen-2-yl)ethanone. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o67-o68.	0.2	0
125	1-Methoxy-4-methyl-9,10-anthraquinone. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2973-o2973.	0.2	0
126	IDENTIFICATION OF OLIGOSTILBENES FROM Dipterocarpus semivestitus THROUGH DEREPLICATION TECHNIQUE. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	0

NOR HADIANI ISMAIL

#	Article	IF	CITATIONS
127	System biology analyses of the dynamic host response to Toxoplasma gondii infection in a murine model. Journal of Microbiology, Immunology and Infection, 2015, 48, S47.	3.1	Ο
128	ANTIDIABETIC EFFECTS OF KNEMA GLAUCA LEAF EXTRACT TOWARD INHIBITIONS OF Îʿ-AMYLASE AND Îʿ-GLUCOSIDASE ASSAYS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
129	Systems biology analyses of the dynamic host response to Toxoplasma gondii infection in a murine model. Parasitology Open, 2016, 2, .	0.9	Ο
130	Ficus deltoidea reduces expression of interleukin 6 via nuclear factor kappa b pathway in human coronary artery endothelial cells. Atherosclerosis, 2017, 263, e122.	0.8	0
131	Ficus deltoidea Trengganuensis is the most potent variant in reducing endothelial activation and monocyte-endothelial cell interaction in stimulated human coronary artery endothelial cells. Atherosclerosis, 2017, 263, e135-e136.	0.8	0
132	Alkaloids from the Malayan Hunteria zeylanica Gard Malaysian Journal of Science, 2009, 28, 205-208.	0.3	0
133	Dihydrochalcone from the Leaves of (Annonaceae). The Open Conference Proceedings Journal, 2013, 4, 169-169.	0.6	0
134	Synthesis of 2-Methoxybenzoylhydrazone and Evaluation of their Antileishmanial Activity. The Open Conference Proceedings Journal, 2013, 4, 167-167.	0.6	0
135	Synthesis of 4-Methoxybenzoylhydrazone Derivatives and Evaulation of Their Antiglycation Activity. The Open Conference Proceedings Journal, 2013, 4, 178-178.	0.6	0
136	Triterpenes from the Stems of var The Open Conference Proceedings Journal, 2013, 4, 223-223.	0.6	0
137	Prenylated Phloroglucinol from Mesua Ferrea (Bark). The Open Conference Proceedings Journal, 2013, 4, 46-46.	0.6	0
138	(E)-N′-(3,4-Dihydroxybenzylidene)-2,4-dimethylbenzohydrazide monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o490-o490.	0.2	0
139	Synthesis of Substituted by Using Sodium Thiosulfate in Polyethylene Glycol 400 (PEG-400). The Open Conference Proceedings Journal, 2013, 4, 299-299.	0.6	0
140	Flavonoid Analogues Isolated from the Stem Bark of Malaysian VAR. (Annonaceae) with Anticancer Properties. The Open Conference Proceedings Journal, 2013, 4, 207-207.	0.6	0
141	Prelimanary Quantitative Structure-Activity Relationship Study of 9,10- Anthraquinone Analogues Based on their Antiplasmodial Activity. The Open Conference Proceedings Journal, 2013, 4, 134-134.	0.6	0
142	Aldehydes from Stem of. The Open Conference Proceedings Journal, 2013, 4, 111-111.	0.6	0
143	Xanthine Oxidase Inhibitory Activity of Tetracera Indica. The Open Conference Proceedings Journal, 2014, 4, 93-94.	0.6	0
144	ACUTE ORAL TOXICITY STUDY OF ROOT METHANOL EXTRACT OF Goniothalamus lanceolatus Miq. AND ITS		0

ISOLATED BIOACTIVE COMPOUND (PARVISTONE D) IN MURINE MODEL., 2022, 51, 77-86. 144

0