
Philip C Y Chow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531999/publications.pdf Version: 2024-02-01

Рино СУ Сном

#	Article	IF	CITATIONS
1	Quasiâ€2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
2	Quasiâ€2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	5
3	Asymmetric Alkoxy and Alkyl Substitution on Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003141.	10.2	144
4	Optically Probing Field-Dependent Charge Dynamics in Non-Fullerene Organic Photovoltaics with Small Interfacial Energy Offsets. Journal of Physical Chemistry C, 2021, 125, 1714-1722.	1.5	5
5	Unraveling the Temperature Dependence of Exciton Dissociation and Free Charge Generation in Nonfullerene Organic Solar Cells. Solar Rrl, 2021, 5, 2000789.	3.1	10
6	Factors That Prevent Spin-Triplet Recombination in Non-fullerene Organic Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 5045-5051.	2.1	7
7	Quantification of Temperatureâ€Dependent Charge Separation and Recombination Dynamics in Nonâ€Fullerene Organic Photovoltaics. Advanced Functional Materials, 2021, 31, 2107157.	7.8	13
8	Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 2989-3026.	5.8	19
9	Organic Photodetectors for Nextâ€Generation Wearable Electronics. Advanced Materials, 2020, 32, e1902045.	11.1	401
10	Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells. Joule, 2020, 4, 1790-1805.	11.7	110
11	High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule, 2020, 4, 1607-1611.	11.7	12
12	Delocalization of exciton and electron wavefunction in non-fullerene acceptor molecules enables efficient organic solar cells. Nature Communications, 2020, 11, 3943.	5.8	458
13	Allâ€Polymer Solar Cells with over 12% Efficiency and a Small Voltage Loss Enabled by a Polymer Acceptor Based on an Extended Fused Ring Core. Advanced Energy Materials, 2020, 10, 2001408.	10.2	55
14	Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nature Communications, 2020, 11, 5617.	5.8	73
15	High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer. Joule, 2020, 4, 1486-1500.	11.7	169
16	Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency. Nano Energy, 2020, 76, 105087.	8.2	85
17	A 16.4% efficiency organic photovoltaic cell enabled using two donor polymers with their side-chains oriented differently by a ternary strategy. Journal of Materials Chemistry A, 2020, 8, 3676-3685.	5.2	48
18	Donor Polymer Can Assist Electron Transport in Bulk Heterojunction Blends with Small Energetic Offsets. Advanced Materials, 2019, 31, e1903998.	11.1	49

PHILIP C Y CHOW

#	Article	IF	CITATIONS
19	Inverted planar perovskite solar cells based on CsI-doped PEDOT:PSS with efficiency beyond 20% and small energy loss. Journal of Materials Chemistry A, 2019, 7, 21662-21667.	5.2	77
20	Temperatureâ€Dependent Aggregation Donor Polymers Enable Highly Efficient Sequentially Processed Organic Photovoltaics Without the Need of Orthogonal Solvents. Advanced Functional Materials, 2019, 29, 1902478.	7.8	50
21	Photocurrent Amplification in Bulk Heterojunction Organic Phototransistors with Different Donor–Acceptor Ratio. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1700400.	1.2	6
22	Alkyl Chain Regiochemistry of Benzotriazoleâ€Based Donor Polymers Influencing Morphology and Performances of Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702427.	10.2	36
23	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
24	Influence of Donor Polymer on the Molecular Ordering of Small Molecular Acceptors in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701674.	10.2	60
25	A Facile Method to Fineâ€Tune Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	10.2	62
26	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	11.1	161
27	Dual-gate organic phototransistor with high-gain and linear photoresponse. Nature Communications, 2018, 9, 4546.	5.8	76
28	A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 6298-6301.	6.6	327
29	A wide bandgap conjugated polymer based on a vertically connected benzodithiophene unit enabling efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15017-15020.	5.2	11
30	Design of Donor Polymers with Strong Temperature-Dependent Aggregation Property for Efficient Organic Photovoltaics. Accounts of Chemical Research, 2017, 50, 2519-2528.	7.6	222
31	Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells with a Small Voltage Loss. Journal of the American Chemical Society, 2017, 139, 16092-16095.	6.6	304
32	In Situ Optical Measurement of Charge Transport Dynamics in Organic Photovoltaics. Nano Letters, 2015, 15, 931-935.	4.5	8
33	Role of PbSe Structural Stabilization in Photovoltaic Cells. Advanced Functional Materials, 2015, 25, 928-935.	7.8	21
34	Nanosecond Intersystem Crossing Times in Fullerene Acceptors: Implications for Organic Photovoltaic Diodes. Advanced Materials, 2014, 26, 4851-4854.	11.1	63
35	Quantitative Bimolecular Recombination in Organic Photovoltaics through Triplet Exciton Formation. Journal of the American Chemical Society, 2014, 136, 3424-3429.	6.6	93
36	Recombination pathways in polymer:fullerene photovoltaics observed through spin polarization measurements. Applied Physics Letters, 2014, 104, .	1.5	26

PHILIP C Y CHOW

#	Article	IF	CITATIONS
37	Allâ€Inkjetâ€Printed, Allâ€Airâ€Processed Solar Cells. Advanced Energy Materials, 2014, 4, 1400432.	10.2	135
38	Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid. Journal of Physical Chemistry C, 2014, 118, 13042-13051.	1.5	29
39	All-Inkjet-Printed, All-Air-Processed Solar Cells. , 2014, 4, 1400432.		1
40	The role of spin in the kinetic control of recombination in organic photovoltaics. Nature, 2013, 500, 435-439.	13.7	460
41	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2013, 4, 209-215.	2.1	120
42	Slow hole transfer kinetics lead to high blend photoluminescence of unfused Aâ€Dâ€A′â€Dâ€A type acceptors with unfavorable HOMO offset. Solar Rrl, 0, , .	3.1	0