Shijun Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531745/publications.pdf

Version: 2024-02-01

23533 34105 15,184 225 52 111 h-index citations g-index papers 232 232 232 3301 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the homotopy analysis method for nonlinear problems. Applied Mathematics and Computation, 2004, 147, 499-513.	2.2	1,417
2	An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 2003-2016.	3.3	736
3	Notes on the homotopy analysis method: Some definitions and theorems. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 983-997.	3.3	702
4	An explicit, totally analytic approximate solution for Blasius' viscous flow problems. International Journal of Non-Linear Mechanics, 1999, 34, 759-778.	2.6	564
5	Homotopy Analysis Method in Nonlinear Differential Equations. , 2012, , .		554
6	On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. Journal of Fluid Mechanics, 2003, 488, 189-212.	3.4	524
7	An approximate solution technique not depending on small parameters: A special example. International Journal of Non-Linear Mechanics, 1995, 30, 371-380.	2.6	515
8	A new branch of solutions of boundary-layer flows over an impermeable stretched plate. International Journal of Heat and Mass Transfer, 2005, 48, 2529-2539.	4.8	408
9	A General Approach to Obtain Series Solutions of Nonlinear Differential Equations. Studies in Applied Mathematics, 2007, 119, 297-354.	2.4	378
10	Comparison between the homotopy analysis method and homotopy perturbation method. Applied Mathematics and Computation, 2005, 169, 1186-1194.	2.2	368
11	A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate. Journal of Fluid Mechanics, 1999, 385, 101-128.	3.4	357
12	A kind of approximate solution technique which does not depend upon small parameters — II. An application in fluid mechanics. International Journal of Non-Linear Mechanics, 1997, 32, 815-822.	2.6	313
13	Foundations of offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 2019, 104, 379-393.	16.4	270
14	An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 326-339.	3.3	246
15	Analytic solutions of the temperature distribution in Blasius viscous flow problems. Journal of Fluid Mechanics, 2002, 453, 411-425.	3.4	245
16	Homotopy analysis of nonlinear progressive waves in deep water. Journal of Engineering Mathematics, 2003, 45, 105-116.	1.2	218
17	Homotopy analysis method: A new analytic method for nonlinear problems. Applied Mathematics and Mechanics (English Edition), 1998, 19, 957-962.	3.6	170
18	Explicit analytic solution for similarity boundary layer equations. International Journal of Heat and Mass Transfer, 2004, 47, 75-85.	4.8	168

#	Article	IF	CITATIONS
19	Application of Homotopy Analysis Method in Nonlinear Oscillations. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 914-922.	2.2	154
20	Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano-fluid. Computers and Fluids, 2015, 111, 69-75.	2.5	142
21	A new analytic algorithm of Lane–Emden type equations. Applied Mathematics and Computation, 2003, 142, 1-16.	2.2	139
22	Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate. Journal of Non-Newtonian Fluid Mechanics, 2005, 129, 46-55.	2.4	134
23	Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2355-2369.	2.8	129
24	Homotopy analysis method: A new analytical technique for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 1997, 2, 95-100.	3.3	121
25	Series solutions of non-linear Riccati differential equations with fractional order. Chaos, Solitons and Fractals, 2009, 40, 1-9.	5.1	121
26	A new branch of solutions of boundary-layer flows over a permeable stretching plate. International Journal of Non-Linear Mechanics, 2007, 42, 819-830.	2.6	119
27	A general approach to get series solution of non-similarity boundary-layer flows. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2144-2159.	3.3	118
28	Series Solutions of Unsteady Boundary-Layer Flows over a Stretching Flat Plate. Studies in Applied Mathematics, 2006, 117, 239-263.	2.4	113
29	An analytic approximation of the drag coefficient for the viscous flow past a sphere. International Journal of Non-Linear Mechanics, 2002, 37, 1-18.	2.6	110
30	Boundary element method for general nonlinear differential operators. Engineering Analysis With Boundary Elements, 1997, 20, 91-99.	3.7	108
31	Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. European Journal of Mechanics, B/Fluids, 2007, 26, 15-27.	2.5	105
32	Series solutions of nano boundary layer flows by means of the homotopy analysis method. Journal of Mathematical Analysis and Applications, 2008, 343, 233-245.	1.0	105
33	Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons and Fractals, 2005, 26, 177-185.	5.1	104
34	Homotopy based solutions of the Navier–Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids, 2010, 22, .	4.0	103
35	An explicit solution of the large deformation of a cantilever beam under point load at the free tip. Journal of Computational and Applied Mathematics, 2008, 212, 320-330.	2.0	97
36	An analytic approach to solve multiple solutions of a strongly nonlinear problem. Applied Mathematics and Computation, 2005, 169, 854-865.	2,2	95

#	Article	IF	Citations
37	An explicit analytic solution to the Thomas–Fermi equation. Applied Mathematics and Computation, 2003, 144, 495-506.	2.2	91
38	Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones. Zeitschrift Fur Angewandte Mathematik Und Physik, 2006, 57, 777-792.	1.4	91
39	Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel. Applied Mathematics and Computation, 2014, 242, 528-540.	2.2	90
40	Modeling of storm-induced coastal flooding for emergency management. Ocean Engineering, 2003, 30, 1353-1386.	4.3	85
41	An analytic approximate approach for free oscillations of self-excited systems. International Journal of Non-Linear Mechanics, 2004, 39, 271-280.	2.6	85
42	Advances in the Homotopy Analysis Method. , 2014, , .		85
43	On the explicit, purely analytic solution of Von $K\tilde{A}_i$ rm \tilde{A}_i n swirling viscous flow. Communications in Nonlinear Science and Numerical Simulation, 2006, 11, 83-93.	3.3	83
44	An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude. International Journal of Non-Linear Mechanics, 2003, 38, 1173-1183.	2.6	81
45	Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. International Journal of Heat and Mass Transfer, 2006, 49, 2437-2445.	4.8	79
46	On the relationship between the homotopy analysis method and Euler transform. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1421-1431.	3.3	76
47	Analysis of nonlinear fractional partial differential equations with the homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1152-1156.	3.3	74
48	The explicit series solution of SIR and SIS epidemic models. Applied Mathematics and Computation, 2009, 215, 653-669.	2.2	74
49	Newton-homotopy analysis method for nonlinear equations. Applied Mathematics and Computation, 2007, 188, 1794-1800.	2.2	70
50	On the steady-state fully resonant progressive waves in water of finite depth. Journal of Fluid Mechanics, 2012, 710, 379-418.	3.4	69
51	Laminar flow and heat transfer in the boundary-layer of non-Newtonian fluids over a stretching flat sheet. Computers and Mathematics With Applications, 2009, 57, 1425-1431.	2.7	68
52	Series solution of unsteady boundary layer flows of non-Newtonian fluids near a forward stagnation point. Journal of Non-Newtonian Fluid Mechanics, 2006, 139, 31-43.	2.4	67
53	A Second-Order Approximate Analytical Solution of a Simple Pendulum by the Process Analysis Method. Journal of Applied Mechanics, Transactions ASME, 1992, 59, 970-975.	2.2	62
54	Numerically solving non-linear problems by the homotopy analysis method. Computational Mechanics, 1997, 20, 530-540.	4.0	62

#	Article	IF	CITATIONS
55	Unsteady mixed nano-bioconvection flow in a horizontal channel with its upper plate expanding or contracting. International Journal of Heat and Mass Transfer, 2015, 86, 174-182.	4.8	55
56	Dual solutions of boundary layer flow over an upstream moving plate. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 350-358.	3.3	54
57	Analytic Series Solution for Unsteady Mixed Convection Boundary Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium. Transport in Porous Media, 2005, 61, 365-379.	2.6	52
58	On the reliability of computed chaotic solutions of non-linear differential equations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 61, 550.	1.7	52
59	Explicit series solution of travelling waves with a front of Fisher equation. Chaos, Solitons and Fractals, 2007, 31, 462-472.	5.1	51
60	On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000]. Science China: Physics, Mechanics and Astronomy, 2014, 57, 330-335.	5.1	50
61	Solving the one-loop soliton solution of the Vakhnenko equation by means of the Homotopy analysis method. Chaos, Solitons and Fractals, 2005, 23, 1733-1740.	5.1	48
62	Steady-state resonance of multiple wave interactions in deep water. Journal of Fluid Mechanics, 2014, 742, 664-700.	3 . 4	48
63	On the explicit analytic solution of Cheng–Chang equation. International Journal of Heat and Mass Transfer, 2003, 46, 1855-1860.	4.8	46
64	Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method. Nonlinear Analysis: Real World Applications, 2009, 10, 2455-2470.	1.7	44
65	General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation. Computational Mechanics, 1997, 20, 397-406.	4.0	42
66	A HAM-based wavelet approach for nonlinear partial differential equations: Two dimensional Bratu problem as an application. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 249-262.	3.3	42
67	An explicit series approximation to the optimal exercise boundary of American put options. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1148-1158.	3.3	40
68	More than six hundred new families of Newtonian periodic planar collisionless three-body orbits. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	39
69	Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces. Numerical Algorithms, 2015, 70, 43-59.	1.9	38
70	On the steady-state nearly resonant waves. Journal of Fluid Mechanics, 2016, 794, 175-199.	3.4	38
71	A HAM-based wavelet approach for nonlinear ordinary differential equations. Communications in Nonlinear Science and Numerical Simulation, 2017, 48, 439-453.	3.3	37
72	Analysis of mixed convection flow in an inclined lid-driven enclosure with Buongiorno's nanofluid model. International Journal of Heat and Mass Transfer, 2018, 126, 221-236.	4.8	37

#	Article	IF	Citations
73	An analytical solution for a nonlinear time-delay model in biology. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3141-3148.	3.3	36
74	Calculation of added mass coefficients of 3D complicated underwater bodies by FMBEM. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 187-194.	3. 3	36
75	Series solutions of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface. Acta Mechanica, 2006, 184, 87-101.	2.1	35
76	Series solutions of coupled Van der Pol equation by means of homotopy analysis method. Journal of Mathematical Physics, 2010, 51, .	1.1	34
77	On the existence of steady-state resonant waves in experiments. Journal of Fluid Mechanics, 2015, 763, 1-23.	3.4	34
78	The improved homotopy analysis method for the Thomasâ€"Fermi equation. Applied Mathematics and Computation, 2012, 218, 8363-8369.	2.2	32
79	On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems. Chaos, Solitons and Fractals, 2013, 47, 1-12.	5.1	31
80	Physical limit of prediction for chaotic motion of three-body problem. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 601-616.	3.3	31
81	A family of new solutions on the wall jet. European Journal of Mechanics, B/Fluids, 2008, 27, 322-334.	2.5	29
82	Optimal Homotopy Analysis Method. , 2012, , 95-129.		29
83	On the limiting Stokes wave of extreme height in arbitrary water depth. Journal of Fluid Mechanics, 2018, 843, 653-679.	3.4	28
84	A Simple Approach of Enlarging Convergence Regions of Perturbation Approximations. Nonlinear Dynamics, 1999, 19, 93-111.	5.2	27
85	On the method of directly defining inverse mapping for nonlinear differential equations. Numerical Algorithms, 2016, 72, 989-1020.	1.9	26
86	Higher-order streamfunction-vorticity formulation of 2D steady-state Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 1992, 15, 595-612.	1.6	25
87	The scaled boundary FEM for nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 63-75.	3.3	25
88	Series solutions of unsteady free convection flow in the stagnation-point region of a three-dimensional body. International Journal of Thermal Sciences, 2008, 47, 600-608.	4.9	24
89	An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain. Computer Physics Communications, 2013, 184, 2136-2144.	7.5	24
90	Collisionless periodic orbits in the free-fall three-body problem. New Astronomy, 2019, 70, 22-26.	1.8	24

#	Article	IF	Citations
91	An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate. Communications in Nonlinear Science and Numerical Simulation, 1998, 3, 53-57.	3.3	23
92	A challenging nonlinear problem for numerical techniques. Journal of Computational and Applied Mathematics, 2005, 181, 467-472.	2.0	23
93	Symbolic computation of strongly nonlinear periodic oscillations. Journal of Symbolic Computation, 2013, 55, 72-95.	0.8	23
94	Finite amplitude steady-state wave groups with multiple near resonances in deep water. Journal of Fluid Mechanics, 2018, 835, 624-653.	3.4	23
95	A novel homotopy-wavelet approach for solving stream function-vorticity formulation of Navier–Stokes equations. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 124-151.	3.3	23
96	Observation of two coupled Faraday waves in a vertically vibrating Hele-Shaw cell with one of them oscillating horizontally. Physics of Fluids, 2018, 30, 012108.	4.0	22
97	Coiflets solutions for Föppl-von Kármán equations governing large deflection of a thin flat plate by a novel wavelet-homotopy approach. Numerical Algorithms, 2018, 79, 993-1020.	1.9	22
98	Analytic approximations of Von Kármán plate under arbitrary uniform pressureâ€"equations in integral form. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	5.1	21
99	On the steady-state resonant acoustic–gravityÂwaves. Journal of Fluid Mechanics, 2018, 849, 111-135.	3.4	21
100	Series solutions of unsteady MHD flows above a rotating disk. Meccanica, 2006, 41, 599-609.	2.0	20
101	Series Solution of Three-Dimensional Unsteady Laminar Viscous Flow Due to a Stretching Surface in a Rotating Fluid. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 1011-1018.	2.2	20
102	On the interaction of deep water waves and exponential shear currents. Zeitschrift Fur Angewandte Mathematik Und Physik, 2009, 60, 450-478.	1.4	20
103	A short review on the homotopy analysis method in fluid mechanics. Journal of Hydrodynamics, 2010, 22, 839-841.	3.2	20
104	Analytic Solutions of Von Kármán Plate under Arbitrary Uniform Pressure â€" Equations in Differential Form. Studies in Applied Mathematics, 2017, 138, 371-400.	2.4	20
105	On the general boundary element method. Engineering Analysis With Boundary Elements, 1998, 21, 39-51.	3.7	19
106	A non-iterative numerical approach for two-dimensional viscous flow problems governed by the Falker-Skan equation. International Journal for Numerical Methods in Fluids, 2001, 35, 495-518.	1.6	18
107	An explicit solution for the combined heat and mass transfer by natural convection from a vertical wall in a non-Darcy porous medium. International Journal of Heat and Mass Transfer, 2003, 46, 4813-4822.	4.8	18
108	Application of Process Analysis Method to the Solution of 2-DNonlinear Progressive Gravity Waves. Journal of Ship Research, 1992, 36, 30-37.	1.1	18

#	Article	IF	CITATIONS
109	GENERAL BOUNDARY ELEMENT METHOD FOR NON-LINEAR PROBLEMS. International Journal for Numerical Methods in Fluids, 1996, 23, 467-483.	1.6	17
110	Chapter 9: HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems. , 2014, , 361-417.		17
111	On the clean numerical simulation (CNS) of chaotic dynamic systems. Journal of Hydrodynamics, 2017, 29, 729-747.	3.2	17
112	Over a thousand new periodic orbits of a planar three-body system with unequal masses. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	17
113	On the risks of using double precision in numerical simulations of spatio-temporal chaos. Journal of Computational Physics, 2020, 418, 109629.	3.8	17
114	A Series Solution of the Unsteady Von K \tilde{A}_i rm \tilde{A}_i n Swirling Viscous Flows. Acta Applicandae Mathematicae, 2007, 94, 215-231.	1.0	16
115	Unsteady non-similarity boundary-layer flows caused by an impulsively stretching flat sheet. Nonlinear Analysis: Real World Applications, 2011, 12, 333-342.	1.7	16
116	Observation of two-dimensional Faraday waves in extremely shallow depth. Physical Review E, 2015, 92, 033014.	2.1	16
117	On the homotopy analysis method for backward/forward-backward stochastic differential equations. Numerical Algorithms, 2017, 76, 487-519.	1.9	16
118	On the origin of intrinsic randomness of Rayleigh-Bénard turbulence. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	15
119	Nonlinear analysis for extreme large bending deflection of a rectangular plate on non-uniform elastic foundations. Applied Mathematical Modelling, 2018, 61, 316-340.	4.2	15
120	Stability and hysteresis of Faraday waves in Hele-Shaw cells. Journal of Fluid Mechanics, 2019, 871, 694-716.	3.4	15
121	Series Solution of Non-similarity Boundary-Layer Flows Over a Porous Wedge. Transport in Porous Media, 2010, 83, 397-412.	2.6	14
122	A consistent and balanced-force model for incompressible multiphase flows on polyhedral unstructured grids. International Journal of Multiphase Flow, 2020, 122, 103125.	3.4	14
123	Faraday waves in a Hele-Shaw cell. Physics of Fluids, 2018, 30, .	4.0	13
124	Three-body problem â€" From Newton to supercomputer plus machine learning. New Astronomy, 2022, 96, 101850.	1.8	13
125	On the Inherent Self-Excited Macroscopic Randomness of Chaotic Three-Body Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530023.	1.7	12
126	On time independent SchrĶdinger equations in quantum mechanics by the homotopy analysis method. Theoretical and Applied Mechanics Letters, 2019, 9, 376-381.	2.8	12

#	Article	IF	Citations
127	Steady-state multiple near resonances of periodic interfacial waves with rigid boundary. Physics of Fluids, 2020, 32, .	4.0	12
128	Analytical solutions for the hydrogen atom in plasmas with electric, magnetic, and Aharonov-Bohm flux fields. Physical Review E, 2021, 103, 023206.	2.1	12
129	The general boundary element method and its further generalizations. International Journal for Numerical Methods in Fluids, 1999, 31, 627-655.	1.6	11
130	A direct boundary element approach for unsteady non-linear heat transfer problems. Engineering Analysis With Boundary Elements, 2002, 26, 55-59.	3.7	11
131	An explicit analytic solution for non-Darcy natural convection over horizontal plate with surface mass flux and thermal dispersion effects. Acta Mechanica, 2003, 165, 139-150.	2.1	11
132	A new method for homoclinic solutions of ordinary differential equations. Chaos, Solitons and Fractals, 2009, 39, 1073-1082.	5.1	11
133	Chaos: A bridge from microscopic uncertainty to macroscopic randomness. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2564-2569.	3.3	11
134	Equilibrium states of class-I Bragg resonant wave system. European Journal of Mechanics, B/Fluids, 2015, 50, 38-51.	2.5	11
135	High-fidelity solver on polyhedral unstructured grids for low-Mach number compressible viscous flow. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112584.	6.6	11
136	A general analytical approach to study solute dispersion in non-Newtonian fluid flow. European Journal of Mechanics, B/Fluids, 2019, 77, 183-200.	2.5	11
137	Series solution of non-similarity natural convection boundary-layer flows over permeable vertical surface. Science China: Physics, Mechanics and Astronomy, 2010, 53, 360-368.	5.1	10
138	On the Nonsimilarity Boundary-Layer Flows of Second-Order Fluid Over a Stretching Sheet. Journal of Applied Mechanics, Transactions ASME, 2010, 77, .	2.2	10
139	Numerical solution of the high thermal loss problem presented by a fractional differential equation. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1356-1362.	3.3	10
140	Observations of highly localized oscillons with multiple crests and troughs. Physical Review E, 2014, 90, 031001.	2.1	10
141	On the stability of the three classes of Newtonian three-body planar periodic orbits. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2121-2126.	5.1	10
142	A HAM-based analytic approach for physical models with an infinite number of singularities. Numerical Algorithms, 2015, 69, 59-74.	1.9	10
143	Pattern transition of two-dimensional Faraday waves at an extremely shallow depth. Science China: Physics, Mechanics and Astronomy, 2016, 59, 1.	5.1	10
144	Mass, momentum, and energy flux conservation between linear and nonlinear steady-state wave groups. Physics of Fluids, 2017, 29, 127104.	4.0	10

#	Article	IF	Citations
145	On the generalized wavelet-Galerkin method. Journal of Computational and Applied Mathematics, 2018, 331, 178-195.	2.0	10
146	Steady-state harmonic resonance of periodic interfacial waves with free-surface boundary conditions based on the homotopy analysis method. Journal of Fluid Mechanics, 2021, 916, .	3.4	10
147	A short note on the general boundary element method for viscous flows with high Reynolds number. International Journal for Numerical Methods in Fluids, 2003, 42, 349-359.	1.6	9
148	Solving high Reynolds-number viscous flows by the general BEM and domain decomposition method. International Journal for Numerical Methods in Fluids, 2005, 47, 185-199.	1.6	9
149	Some notes on the general boundary element method for highly nonlinear problems. Communications in Nonlinear Science and Numerical Simulation, 2005, 10, 725-735.	3.3	9
150	A new branch of the temperature distribution of boundary-layer flows over an impermeable stretching plate. Heat and Mass Transfer, 2008, 44, 501-504.	2.1	9
151	SERIES SOLUTION OF LARGE DEFORMATION OF A BEAM WITH ARBITRARY VARIABLE CROSS SECTION UNDER AN AXIAL LOAD. ANZIAM Journal, 2009, 51, 10-33.	0.2	9
152	High-order multi-moment finite volume method with smoothness adaptive fitting reconstruction for compressible viscous flow. Journal of Computational Physics, 2019, 394, 559-593.	3.8	9
153	Influence of numerical noises on computer-generated simulation of spatio-temporal chaos. Chaos, Solitons and Fractals, 2020, 136, 109790.	5.1	9
154	Accurate predictions of chaotic motion of a free fall disk. Physics of Fluids, 2021, 33, .	4.0	9
155	HIGH-ORDER BEM FORMULATIONS FOR STRONGLY NON-LINEAR PROBLEMS GOVERNED BY QUITE GENERAL NON-LINEAR DIFFERENTIAL OPERATORS. PART 2: SOME 2D EXAMPLES. International Journal for Numerical Methods in Fluids, 1997, 24, 863-873.	1.6	8
156	Flow of a Weakly Conducting Fluid in a Channel Filled with a Darcy–Brinkman–Forchheimer Porous Medium. Transport in Porous Media, 2010, 85, 131-142.	2.6	8
157	Analytic solutions of the rise dynamics of liquid in a vertical cylindrical capillary. European Journal of Mechanics, B/Fluids, 2019, 78, 1-10.	2.5	8
158	A conservative solver for surface-tension-driven multiphase flows on collocated unstructured grids. Journal of Computational Physics, 2020, 401, 109025.	3.8	8
159	A new non-perturbative approach in quantum mechanics for time-independent Schr $ ilde{A}\P$ dinger equations. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	8
160	On the viscous flow past a sphere: A simplified description. Communications in Nonlinear Science and Numerical Simulation, 1999, 4, 104-109.	3.3	7
161	A new modification of false position method based on homotopy analysis method. Applied Mathematics and Mechanics (English Edition), 2008, 29, 223-228.	3.6	7
162	Do peaked solitary water waves indeed exist?. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1792-1821.	3.3	7

#	Article	IF	CITATIONS
163	Can We Obtain a Reliable Convergent Chaotic Solution in any Given Finite Interval of Time?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450119.	1.7	7
164	Clean numerical simulation: a new strategy to obtain reliable solutions of chaotic dynamic systems. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1529-1546.	3.6	7
165	Effect of width on the properties of Faraday waves in Hele-Shaw cells. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	7
166	On collinear steady-state gravity waves with an infinite number of exact resonances. Physics of Fluids, 2019, 31, 122109.	4.0	7
167	A multigrid approach for steady state laminar viscous flows. International Journal for Numerical Methods in Fluids, 2001, 37, 107-123.	1.6	6
168	NUMERICAL SIMULATIONS OF PARTICLE-LADEN AXISYMMETRIC TURBULENT FLOWS. Numerical Heat Transfer; Part A: Applications, 2001, 39, 847-855.	2.1	6
169	Finding multiple solutions of nonlinear problems by means of the homotopy analysis method. Journal of Hydrodynamics, 2006, 18, 54-56.	3.2	6
170	Series solutions of stagnation slip flow and heat transfer by the homotopy analysis method. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 893-899.	0.2	6
171	Phase velocity effects of the wave interaction with exponentially sheared current. Wave Motion, 2014, 51, 967-985.	2.0	6
172	One family of 13315 stable periodic orbits of non-hierarchical unequal-mass triple systems. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	6
173	General boundary element method: an application of homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 1998, 3, 159-163.	3.3	5
174	Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2469-2475.	5.1	5
175	Effect of depth on the properties of two coupled Faraday waves in a Hele-Shaw cell. Physics of Fluids, 2018, 30, .	4.0	5
176	Finite-amplitude steady-state resonant waves in a circular basin. Journal of Fluid Mechanics, 2021, 915, .	3.4	5
177	Wave breaking and jet formation on axisymmetric surface gravity waves. Journal of Fluid Mechanics, 2022, 935, .	3.4	5
178	On the general Taylor theorem and its applications in solving non-linear problems. Communications in Nonlinear Science and Numerical Simulation, 1997, 2, 135-140.	3.3	4
179	Finding multiple solutions of nonlinear problems by means of the homotopy analysis method. Journal of Hydrodynamics, 2006, 18, 54-56.	3.2	4
180	Basic Ideas of the Homotopy Analysis Method. , 2012, , 15-94.		4

#	Article	IF	CITATIONS
181	Systematic Descriptions and Related Theorems. , 2012, , 131-187.		4
182	On peaked solitary waves of the Degasperis-Procesi equation. Science China: Physics, Mechanics and Astronomy, 2013, 56, 418-422.	5.1	4
183	Homotopy analysis method - A new analytic approach for highly nonlinear problems. AIP Conference Proceedings, 2015, , .	0.4	4
184	A buoyancy vertical transport system of deep-sea mining. Journal of Ocean Engineering and Science, 2020, 5, 294-295.	4.3	4
185	A general numerical method for the solution of gravity wave problems. Part 1: 2D steep gravity waves in shallow water. International Journal for Numerical Methods in Fluids, 1991, 12, 727-745.	1.6	3
186	A short communication on Dr. He's modified Lindstedt–Poincaré method. Nonlinear Dynamics, 2007, 49, 317-318.	5.2	3
187	On the HAM-based mathematica package BVPh for coupled nonlinear ODEs. , 2012, , .		3
188	A maple package of automated derivation of homotopy analysis solution for periodic nonlinear oscillations. Journal of Systems Science and Complexity, 2012, 25, 594-616.	2.8	3
189	EXPLICIT SERIES SOLUTION OF A CLOSURE MODEL FOR THE VON KÃRMÃN–HOWARTH EQUATION. ANZIAM Journal, 2010, 52, 179-202.	0.2	2
190	Two new standing solitary waves in shallow water. Wave Motion, 2013, 50, 785-792.	2.0	2
191	On the periodic solutions of the three-body problem. National Science Review, 2019, 6, 1070-1071.	9.5	2
192	Arbitrary high-order non-oscillatory scheme on hybrid unstructured grids based on multi-moment finite volume method. Journal of Computational Physics, 2021, 424, 109841.	3.8	2
193	Inï¬,uence of round-off errors on the reliability of numerical simulations of chaotic dynamic systems. Journal of Applied Nonlinear Dynamics, 2018, 7, 197-204.	0.3	2
194	On Reliable Computation of Lifetime in Transient Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	1.7	2
195	A general numerical method for solution of gravity wave problems. Part 2: Steady nonlinear gravity waves. International Journal for Numerical Methods in Fluids, 1992, 14, 1173-1191.	1.6	1
196	On the 8th-order drag coefficient formula of a sphere in a uniform stream: A simplified description. Communications in Nonlinear Science and Numerical Simulation, 1998, 3, 256-260.	3.3	1
197	Nonlinear Boundary-value Problems with Multiple Solutions. , 2012, , 285-314.		1
198	Unsteady Boundary-layer Flows. , 2012, , 403-421.		1

#	Article	IF	CITATIONS
199	Stagnation-Point Flow of Nanofluid Through Different Utilization of Thermal Radiation Effect. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1107-1115.	0.4	1
200	Chapter 1: Chance and Challenge: A Brief Review of Homotopy Analysis Method., 2014, , 1-33.		1
201	Development of a numerical phase optimized upwinding combined compact difference scheme for solving the Camassa-Holm equation with different initial solitary waves. Numerical Methods for Partial Differential Equations, 2015, 31, 1645-1664.	3.6	1
202	Sub-harmonic resonances of periodic parameter excited oscillators with the absolute value items. AIP Conference Proceedings, 2015 , , .	0.4	1
203	On the dynamics of the gravitational lifting system in the deep sea mining industry. Journal of Ocean Engineering and Science, 2021, 6, 400-404.	4.3	1
204	GENERAL BOUNDARY ELEMENT METHOD FOR NONâ€LINEAR PROBLEMS. International Journal for Numerical Methods in Fluids, 1996, 23, 467-483.	1.6	1
205	EXPLICIT ANALYTIC SOLUTIONS OF KDV EQUATION GIVEN BY THE HOMOTOPY ANALYSIS METHOD., 2005, , .		1
206	Triple collision orbits in the free-fall three-body system without binary collisions. Celestial Mechanics and Dynamical Astronomy, 2021, 133, 1.	1.4	1
207	Explicit series solutions for supersonic flat-plate boundary layer flows. Physics of Fluids, 2022, 34, 073607.	4.0	1
208	On the quartet resonance of gravity waves in water of finite depth. , 2012, , .		0
209	Some Methods Based on the HAM. , 2012, , 223-235.		0
210	Relationship to Euler Transform. , 2012, , 189-221.		0
211	Mathematica Package BVPh. , 2012, , 239-284.		0
212	Nonlinear Eigenvalue Equations with Varying Coefficients., 2012,, 315-361.		0
213	A Boundary-layer Flow with an Infinite Number of Solutions. , 2012, , 363-381.		O
214	Non-similarity Boundary-layer Flows. , 2012, , 383-401.		0
215	Applications in Finance: American Put Options. , 2012, , 425-459.		O
216	Two and Three Dimensional Gelfand Equation. , 2012, , 461-491.		0

SHIJUN LIAO

#	Article	IF	CITATIONS
217	Interaction of Nonlinear Water Wave and Nonuniform Currents. , 2012, , 493-522.		O
218	Resonance of Arbitrary Number of Periodic Traveling Water Waves. , 2012, , 523-562.		0
219	On the dispersion relation of nonlinear wave current interaction by means of the HAM., 2012,,.		O
220	The experimental study on the standing solitary waves. AIP Conference Proceedings, 2015, , .	0.4	0
221	Analytic investigation of bioconvection in an unsteady squeezing flow of nanofluid between parallel plates. AIP Conference Proceedings, 2015, , .	0.4	O
222	On cusped solitary waves in finite water depth. Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 769-775.	3.3	0
223	The effect of numerical noises on statistics of a chaotic dynamical system. Journal of Physics: Conference Series, 2018, 1039, 012017.	0.4	O
224	Parallel Computation of Reliable Chaotic Solutions of Saltzman's Equations by Means of the Clean Numerical Simulation. Discontinuity, Nonlinearity, and Complexity, 2013, 2, 345-355.	0.2	0
225	A nonâ€iterative numerical approach for twoâ€dimensional viscous flow problems governed by the Falker–Skan equation. International Journal for Numerical Methods in Fluids, 2001, 35, 495-518.	1.6	O