
Tamer T Onder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell, 2009, 138, 645-659.	28.9	2,200
2	Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways. Cancer Research, 2008, 68, 3645-3654.	0.9	1,298
3	miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 2010, 12, 247-256.	10.3	1,216
4	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	7.1	909
5	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902
6	Autocrine TGF-Î ² and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20009-20014.	7.1	682
7	Chromatin-modifying enzymes as modulators of reprogramming. Nature, 2012, 483, 598-602.	27.8	583
8	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	12.6	555
9	Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues. Cell, 2013, 152, 642-654.	28.9	473
10	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
11	Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nature Cell Biology, 2011, 13, 1214-1223.	10.3	246
12	Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity, 2017, 47, 183-198.e6.	14.3	245
13	Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 169-174.	7.1	153
14	Adaptation versus Selection: The Origins of Metastatic Behavior. Cancer Research, 2007, 67, 11476-11480.	0.9	120
15	Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene, 2011, 30, 1489-1496.	5.9	112
16	Distinct and Combinatorial Functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in Mouse Embryonic Stem Cell Identity. Molecular Cell, 2014, 53, 32-48.	9.7	112
17	Robust, Long-Term Culture of Endoderm-Derived Hepatic Organoids for Disease Modeling. Stem Cell Reports, 2019, 13, 627-641.	4.8	94
18	New lessons learned from disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 500-508.	3.3	81

TAMER T ONDER

#	Article	IF	CITATIONS
19	The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming. Stem Cell Reports, 2014, 3, 691-698.	4.8	75
20	Bromodomain inhibition of the coactivators CBP/EP300 facilitate cellular reprogramming. Nature Chemical Biology, 2019, 15, 519-528.	8.0	67
21	Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nature Cell Biology, 2022, 24, 554-564.	10.3	53
22	Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Molecular and Cellular Proteomics, 2019, 18, 1756-1771.	3.8	29
23	Systematic characterization of chromatin modifying enzymes identifies KDM3B as a critical regulator in castration resistant prostate cancer. Oncogene, 2020, 39, 2187-2201.	5.9	28
24	KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death and Disease, 2017, 8, e2897-e2897.	6.3	26
25	NLRP7 plays a functional role in regulating BMP4 signaling during differentiation of patient-derived trophoblasts. Cell Death and Disease, 2020, 11, 658.	6.3	17
26	microRNAs become macro players in somatic cell reprogramming. Genome Medicine, 2011, 3, 40.	8.2	16
27	Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L. Stem Cell Reports, 2017, 9, 943-955.	4.8	16
28	Generation of integration-free induced pluripotent stem cells from a patient with Familial Mediterranean Fever (FMF). Stem Cell Research, 2015, 15, 694-696.	0.7	14
29	Going up the hill: chromatinâ€based barriers to epigenetic reprogramming. FEBS Journal, 2021, 288, 4798-4811.	4.7	13
30	Transgene-Free Disease-Specific iPSC Generation from Fibroblasts and Peripheral Blood Mononuclear Cells. Methods in Molecular Biology, 2015, 1353, 215-231.	0.9	12
31	hCG Improves Luteal Function and Promotes Progesterone Output through the Activation of JNK Pathway in the Luteal Granulosa Cells of the Stimulated IVF Cyclesâ€. Biology of Reproduction, 2020, 102, 1270-1280.	2.7	11
32	Leptin treatment of in vitro cultured embryos increases outgrowth rate of inner cell mass during embryonic stem cell derivation. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 473-481.	1.5	9
33	AF10 (MLLT10) prevents somatic cell reprogramming through regulation of DOT1L-mediated H3K79 methylation. Epigenetics and Chromatin, 2021, 14, 32.	3.9	6
34	Development, characterization, and hematopoietic differentiation of Griscelli syndrome type 2 induced pluripotent stem cells. Stem Cell Research and Therapy, 2021, 12, 287.	5.5	3
35	InÂvivo library screening identifies the metabolic enzyme aldolase A as a promoter of metastatic lung colonization. IScience, 2021, 24, 102425.	4.1	2
36	Generation of transgene-free iPSC lines from three patients with Friedreich's ataxia (FRDA) carrying GAA triplet expansions in the first intron of FXN gene. Stem Cell Research, 2021, 54, 102438.	0.7	2

#	Article	IF	CITATIONS
37	Mechanisms of Somatic Cell Reprogramming. Pancreatic Islet Biology, 2013, , 301-316.	0.3	Ο
38	Abstract PR05: Loss of PRC2 or KMT2D-COMPASS generates two quasi-mesenchymal cell states with distinct metastatic abilities. , 2020, , .		0