Todd Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Social License in the Deployment of Advanced Nuclear Technology. Energies, 2021, 14, 4304.	1.6	1
2	Corrosion Issues in Current and Next-Generation Nuclear Reactors. , 2019, , 211-246.		4
3	Detecting the Oxidation of Zircaloy Claddings by Infrared Interference. Nano, 2018, 13, 1850015.	0.5	4
4	Off-stoichiometric defect clustering in irradiated oxides. Chemical Physics, 2017, 487, 1-10.	0.9	14
5	Analysis of Oxides Formed on the Surface of the Alloy 690 in Hydrogenated Supercritical Water. Acta Metallurgica Sinica (English Letters), 2016, 29, 774-781.	1.5	7
6	Ballistic effects on the copper precipitation and re-dissolution kinetics in an ion irradiated and thermally annealed Fe–Cu alloy. Journal of Chemical Physics, 2016, 145, 104704.	1.2	15
7	Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe–Cr–Ni alloys. Journal of Nuclear Materials, 2016, 473, 35-53.	1.3	25
8	Using a spherical crystallite model with vacancies to relate local atomic structure to irradiation defects in ZrC and ZrN. Journal of Nuclear Materials, 2016, 475, 123-131.	1.3	15
9	SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products. Journal of Nuclear Materials, 2016, 480, 257-270.	1.3	31
10	Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature. Journal of Materials Research, 2015, 30, 1246-1274.	1.2	36
11	Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics. Journal of Chemical Physics, 2015, 142, 094705.	1.2	8
12	Near Surface Stoichiometry in UO ₂ : A Density Functional Theory Study. Journal of Chemistry, 2015, 2015, 1-8.	0.9	2
13	Annealing-induced lattice recovery in room-temperature xenon irradiated CeO ₂ : X-ray diffraction and electron energy loss spectroscopy experiments. Journal of Materials Research, 2015, 30, 1555-1562.	1.2	7
14	Characterization of swift heavy ion irradiation damage in ceria. Journal of Materials Research, 2015, 30, 1473-1484.	1.2	29
15	Impact of Corrosion Test Container Material in Molten Fluorides. Journal of Solar Energy Engineering, Transactions of the ASME, 2015, 137, .	1.1	34
16	Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel. Journal of Nuclear Materials, 2015, 466, 201-207.	1.3	34
17	Experimental Method for Creep Crack Growth Testing in Controlled Environments at High Temperatures. Experimental Mechanics, 2015, 55, 417-426.	1.1	1
18	Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments. Scientific Reports, 2015, 5, 7801.	1.6	82

#	Article	IF	CITATIONS
19	Investigation of material property influenced stoichiometric deviations as evidenced during UV laser-assisted atom probe tomography in fluorite oxides. Nuclear Instruments & Methods in Physics Research B, 2015, 359, 107-114.	0.6	5
20	Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II. Journal of Nuclear Materials, 2015, 465, 516-530.	1.3	28
21	Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt. Journal of Nuclear Materials, 2015, 461, 143-150.	1.3	76
22	Observations of Ag diffusion in ion implanted SiC. Journal of Nuclear Materials, 2015, 461, 314-324.	1.3	17
23	Defect sink characteristics of specific grain boundary types in 304 stainless steels under high dose neutron environments. Acta Materialia, 2015, 89, 438-449.	3.8	33
24	High-Temperature Corrosion of UNS N10003 in Molten Li ₂ BeF ₄ (FLiBe) Salt. Corrosion, 2015, 71, 1257-1266.	0.5	33
25	Corrosion resistance of <scp>PM</scp> 2000 <scp>ODS</scp> steel in high temperature supercritical carbon dioxide. Materials and Corrosion - Werkstoffe Und Korrosion, 2015, 66, 137-142.	0.8	22
26	Bubble formation and Kr distribution in Kr-irradiated UO2. Journal of Nuclear Materials, 2015, 456, 125-132.	1.3	29
27	Effect of exposure environment on surface decomposition of SiC–silver ion implantation diffusion couples. Journal of Nuclear Materials, 2015, 456, 281-286.	1.3	7
28	Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide. Jom, 2014, 66, 2562-2568.	0.9	7
29	Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides. Journal of Nuclear Materials, 2014, 454, 130-135.	1.3	26
30	Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9wt.% Cr model ferritic/martensitic steel. Journal of Nuclear Materials, 2014, 445, 143-148.	1.3	25
31	Phase field simulation of grain growth in porous uranium dioxide. Journal of Nuclear Materials, 2014, 446, 90-99.	1.3	43
32	Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation. Journal of Nuclear Materials, 2014, 445, 181-189.	1.3	44
33	Failure analysis of 316L stainless steel crucible by molten fluoride salt interaction with clay bonded silicon carbide. Engineering Failure Analysis, 2014, 42, 38-44.	1.8	10
34	Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide. Corrosion Science, 2014, 82, 67-76.	3.0	79
35	Measurement of thermal conductivity in proton irradiated silicon. Nuclear Instruments & Methods in Physics Research B, 2014, 325, 11-14.	0.6	30
36	Monitoring the oxidation of nuclear fuel cladding using Raman spectroscopy. Journal of Nuclear Materials, 2014, 445, 7-11.	1.3	10

#	Article	IF	CITATIONS
37	In Situ TEM Observation of Dislocation Evolution in Polycrystalline UO2. Jom, 2014, 66, 2553-2561.	0.9	17
38	Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation. Journal of Nuclear Materials, 2014, 454, 283-289.	1.3	38
39	Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries. Nuclear Engineering and Design, 2014, 277, 55-63.	0.8	18
40	Stability of nanoclusters in 14YWT oxide dispersion strengthened steel under heavy ion-irradiation by atom probe tomography. Journal of Nuclear Materials, 2014, 455, 41-45.	1.3	46
41	Response of 9Cr-ODS steel to proton irradiation at 400°C. Journal of Nuclear Materials, 2014, 452, 87-94.	1.3	29
42	Characterization of structural defects in nuclear graphite IC-110 and NBC-18. Journal of Nuclear Materials, 2014, 446, 193-199.	1.3	53
43	Corrosion of 316L Stainless Steel Alloy and Hastelloy-N Superalloy in Molten Eutectic LiF-NaF-KF Salt and Interaction with Graphite. Nuclear Technology, 2014, 188, 192-199.	0.7	40
44	Electrophoretic deposition of diffusion barrier titanium oxide coatings for nuclear reactor cladding applications. Applied Surface Science, 2013, 282, 798-808.	3.1	19
45	Determination of the β Solvus Temperature of the Aluminum Alloy 5083. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5226-5233.	1.1	15
46	Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment. Corrosion Science, 2013, 69, 281-291.	3.0	148
47	Grain growth and mechanical properties of CeO2-x films deposited on Si(100) substrates by pulsed dc magnetron sputtering. Surface and Coatings Technology, 2013, 217, 34-38.	2.2	29
48	Defect disorder in UO2. Journal of Solid State Chemistry, 2013, 204, 136-145.	1.4	12
49	In situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal. Journal of Nuclear Materials, 2013, 443, 71-77.	1.3	51
50	Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. Journal of Nuclear Materials, 2013, 434, 311-321.	1.3	107
51	Corrosion of ferritic–martensitic steels in steam and supercritical water. Journal of Nuclear Materials, 2013, 441, 604-611.	1.3	88
52	Microstructural evolution in proton irradiated NF616 at 773K to 3dpa. Journal of Nuclear Materials, 2013, 442, S800-S804.	1.3	7
53	Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment. Journal of Nuclear Materials, 2013, 441, 667-673.	1.3	16
54	Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe–21Cr–32Ni). Journal of Nuclear Materials, 2013, 437, 70-74.	1.3	23

#	Article	IF	CITATIONS
55	Development of Yttrium Stabilized Zirconia (YSZ) diffusion barrier coatings for mitigation of Fuel–Cladding Chemical Interactions. Journal of Nuclear Materials, 2013, 438, 268-277.	1.3	23
56	Migration mechanisms of oxygen interstitial clusters in UO ₂ . Journal of Physics Condensed Matter, 2013, 25, 015003.	0.7	18
57	Grain boundary engineering for structure materials of nuclear reactors. Journal of Nuclear Materials, 2013, 441, 661-666.	1.3	88
58	Dependence on grain boundary structure of radiation induced segregation in a 9wt.% Cr model ferritic/martensitic steel. Journal of Nuclear Materials, 2013, 435, 172-180.	1.3	60
59	Direct visualization of β phase causing intergranular forms of corrosion in Al–Mg alloys. Materials Characterization, 2013, 80, 76-85.	1.9	47
60	Development of titanium diffusion barrier coatings for mitigation of fuel–cladding chemical interactions. Surface and Coatings Technology, 2013, 219, 59-68.	2.2	12
61	Investigation of cascade-induced re-solution from nanometer sized coherent precipitates in dilute Fe–Cu alloys. Journal of Nuclear Materials, 2013, 432, 281-286.	1.3	5
62	University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis. , 2013, , .		3
63	Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory. , 2013, , .		0
64	Transmission Electron Microscopy Investigation of Krypton Bubbles in Polycrystalline CeO ₂ . Nuclear Technology, 2013, 182, 164-169.	0.7	8
65	Zirconium Effect on the Corrosion Behavior of 316L Stainless Steel Alloy and Hastelloy-N Superalloy in Molten Fluoride Salt. Nuclear Technology, 2013, 183, 248-259.	0.7	19
66	Corrosion of austenitic alloys in high temperature supercritical carbon dioxide. Corrosion Science, 2012, 60, 246-255.	3.0	141
67	Spectral emissivity measurements of candidate materials for very high temperature reactors. Nuclear Engineering and Design, 2012, 251, 78-83.	0.8	31
68	Modeling radiation induced segregation in Ni–Cr model alloys from first principles. Journal of Nuclear Materials, 2012, 425, 8-15.	1.3	21
69	Oxidation behavior of grain boundary engineered alloy 690 in supercritical water environment. Journal of Nuclear Materials, 2012, 422, 143-151.	1.3	33
70	Defects and microstructural evolution of proton irradiated titanium carbide. Journal of Nuclear Materials, 2012, 424, 62-68.	1.3	15
71	Thermal stability of ultrafine grained Fe–Cr–Ni alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 542, 64-70.	2.6	32

72 Material Performance in Supercritical Water. , 2012, , 292-338.

#	Article	IF	CITATIONS
73	Corrosion behavior of alloy 800H (Fe–21Cr–32Ni) in supercritical water. Corrosion Science, 2011, 53, 703-711.	3.0	109
74	Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide. Corrosion Science, 2011, 53, 3273-3280.	3.0	105
75	In Situ Measurements of Spectral Emissivity of Materials for Very High Temperature Reactors. Nuclear Technology, 2011, 175, 460-467.	0.7	21
76	Design, Fabrication, and Testing of Ceramic Plate-Type Heat Exchangers with Integrated Flow Channel Design. International Journal of Applied Ceramic Technology, 2011, 8, 1073-1086.	1.1	20
77	Ag diffusion in cubic silicon carbide. Journal of Nuclear Materials, 2011, 408, 257-271.	1.3	91
78	Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. Journal of Nuclear Materials, 2011, 411, 41-50.	1.3	119
79	Microstructure optimization of austenitic Alloy 800H (Fe–21Cr–32Ni). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2755-2761.	2.6	40
80	Ab-initio based modeling of diffusion in dilute bcc Fe–Ni and Fe–Cr alloys and implications for radiation induced segregation. Journal of Nuclear Materials, 2011, 411, 1-14.	1.3	101
81	Nickel-plating for active metal dissolution resistance in molten fluoride salts. Journal of Nuclear Materials, 2011, 411, 51-59.	1.3	67
82	Microstructure of RERTR DU-alloys irradiated with krypton ions up to 100dpa. Journal of Nuclear Materials, 2011, 411, 174-180.	1.3	21
83	Experimental study of the hydraulic operation of an annular centrifugal contactor with various mixing vane geometries. AICHE Journal, 2010, 56, 1960-1974.	1.8	10
84	Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel. Journal of Nuclear Materials, 2010, 396, 234-239.	1.3	100
85	Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water. Journal of Nuclear Materials, 2010, 399, 231-235.	1.3	55
86	Kr ion irradiation study of the depleted-uranium alloys. Journal of Nuclear Materials, 2010, 407, 48-54.	1.3	10
87	Evolution of Carbide Precipitates in 2.25Cr-1Mo Steel during Long-Term Service in a Power Plant. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1441-1447.	1.1	17
88	Effect of grain refinement on corrosion of ferritic–martensitic steels in supercritical water environment. Materials and Corrosion - Werkstoffe Und Korrosion, 2010, 61, 748-755.	0.8	36
89	Response of nanoclusters in a 9Cr ODS steel to 1dpa, 525°C proton irradiation. Journal of Nuclear Materials, 2010, 407, 2-9.	1.3	69
90	Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. Journal of Nuclear Materials, 2010, 405, 216-234.	1.3	126

#	Article	IF	CITATIONS
91	High temperature interfacial reactions of TiC, ZrC, TiN, and ZrN with palladium. Solid State Ionics, 2010, 181, 1156-1163.	1.3	18
92	Materials challenges for nuclear systems. Materials Today, 2010, 13, 14-23.	8.3	526
93	Intergranular corrosion of high temperature alloys in molten fluoride salts. Materials at High Temperatures, 2010, 27, 145-149.	0.5	62
94	Effect of thermomechanical treatment on the corrosion of AA5083. Corrosion Science, 2010, 52, 548-554.	3.0	137
95	Corrosion behavior of 9–12% Cr ferritic–martensitic steels in supercritical water. Corrosion Science, 2010, 52, 1520-1528.	3.0	129
96	CFD Simulation of the Separation Zone of an Annular Centrifugal Contactor. Separation Science and Technology, 2009, 44, 517-542.	1.3	30
97	Characterization of surface morphology and retention in tungsten materials exposed to high fluxes of deuterium ions in the tritium plasma experiment. Physica Scripta, 2009, T138, 014042.	1.2	4
98	Analysis of the effect of mixing vane geometry on the flow in an annular centrifugal contactor. AICHE Journal, 2009, 55, 2244-2259.	1.8	27
99	Materials corrosion in molten LiF–NaF–KF salt. Journal of Fluorine Chemistry, 2009, 130, 67-73.	0.9	342
100	High temperature irradiation effects in selected Generation IV structural alloys. Journal of Nuclear Materials, 2009, 392, 331-340.	1.3	41
101	Radiation damage concerns for extended light water reactor service. Jom, 2009, 61, 29-34.	0.9	24
102	Proton irradiation study of GFR candidate ceramics. Journal of Nuclear Materials, 2009, 389, 317-325.	1.3	40
103	Radiation stability of ZrN under 2.6MeV proton irradiation. Journal of Nuclear Materials, 2009, 392, 200-205.	1.3	35
104	Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water. Journal of Nuclear Materials, 2009, 394, 95-101.	1.3	37
105	Localized corrosion of magnetite on ferritic–martensitic steels exposed to supercritical water. Corrosion Science, 2009, 51, 2503-2507.	3.0	14
106	TEM Characterization of Crept and Irradiated Nano-structured Ferritic Alloys. Microscopy and Microanalysis, 2009, 15, 1350-1351.	0.2	4
107	High Temperature Corrosion of Materials in Supercritical Water and Liquid Lead-Alloy Environments. ECS Transactions, 2008, 11, 77-85.	0.3	6
108	Microstructure tailoring for property improvements by grain boundary engineering. Journal of Nuclear Materials, 2008, 374, 270-280.	1.3	122

#	Article	lF	CITATIONS
109	Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. Journal of Nuclear Materials, 2008, 375, 26-37.	1.3	121
110	Cladding and duct materials for advanced nuclear recycle reactors. Jom, 2008, 60, 15-23.	0.9	58
111	Radiation effects on the microstructure of a 9Cr-ODS alloy. Jom, 2008, 60, 24-28.	0.9	7
112	Free surface flow in the mixing zone of an annular centrifugal contactor. AICHE Journal, 2008, 54, 74-85.	1.8	35
113	EBSD for microstructure and property characterization of the SiC-coating in TRISO fuel particles. Journal of Nuclear Materials, 2008, 372, 400-404.	1.3	53
114	Analyzing the effect of displacement rate on radiation-induced segregation in 304 and 316 stainless steels by examining irradiated EBR-II components and samples irradiated with protons. Journal of Nuclear Materials, 2008, 376, 169-173.	1.3	23
115	Microstructure and mechanical properties of proton irradiated zirconium carbide. Journal of Nuclear Materials, 2008, 378, 341-348.	1.3	48
116	Effect of shot-peening on the oxidation of alloy 800H exposed to supercritical water and cyclic oxidation. Corrosion Science, 2008, 50, 2040-2046.	3.0	143
117	Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants. Corrosion Science, 2008, 50, 3056-3062.	3.0	168
118	Influence of Alloy Microstructure on Oxide Growth in HCM12A in Supercritical Water. Materials Research Society Symposia Proceedings, 2008, 1125, 1.	0.1	0
119	Materials Challenges for Generation IV Nuclear Energy Systems. Nuclear Technology, 2008, 162, 342-357.	0.7	105
120	Corrosion Behavior of Alloys 625 and 718 in Supercritical Water. Corrosion, 2007, 63, 603-612.	0.5	78
121	Strain-controlling mechanical behavior in noncrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 235-241.	2.6	10
122	Strain-controlling mechanical behavior in noncrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 229-234.	2.6	3
123	Corrosion behavior of a ferritic/martensitic steel HCM12A exposed to harsh environments. Journal of Nuclear Materials, 2007, 371, 161-170.	1.3	58
124	Time dependence of corrosion in steels for use in lead-alloy cooled reactors. Journal of Nuclear Materials, 2007, 371, 134-144.	1.3	22
125	Corrosion and stress corrosion cracking in supercritical water. Journal of Nuclear Materials, 2007, 371, 176-201.	1.3	359
126	Oxidation of 9Cr oxide dispersion strengthened steel exposed in supercritical water. Journal of Nuclear Materials, 2007, 371, 118-128.	1.3	55

#	Article	IF	CITATIONS
127	Corrosion of CVD Silicon Carbide in 500°C Supercritical Water. Journal of the American Ceramic Society, 2007, 90, 315-318.	1.9	53
128	Thermal and radiation-induced segregation in model Ni-base alloys. Journal of Nuclear Materials, 2007, 361, 174-183.	1.3	25
129	Role of grain boundary engineering in the SCC behavior of ferritic–martensitic alloy HT-9. Journal of Nuclear Materials, 2007, 361, 160-173.	1.3	51
130	Effect of thermomechanical processing on grain boundary character distribution of a Ni-based superalloy. Journal of Nuclear Materials, 2007, 371, 171-175.	1.3	72
131	RADIATION DAMAGE FROM DIFFERENT PARTICLE TYPES. , 2007, , 65-98.		13
132	RADIATION-ENHANCED DIFFUSION AND RADIATION-INDUCED SEGREGATION. , 2007, , 123-151.		8
133	HIGH DOSE RADIATION EFFECTS IN STEELS. , 2007, , 99-121.		0
134	Corrosion behavior of ferritic–martensitic steel T91 in supercritical water. Corrosion Science, 2006, 48, 2843-2854.	3.0	144
135	Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water. Corrosion Science, 2006, 48, 3123-3138.	3.0	121
136	Porosity prediction in supercritical water exposed ferritic/martensitic steel HCM12A. Corrosion Science, 2006, 48, 4234-4242.	3.0	46
137	The effect of dose rate on the response of austenitic stainless steels to neutron radiation. Journal of Nuclear Materials, 2006, 348, 148-164.	1.3	44
138	The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water. Journal of Nuclear Materials, 2006, 348, 263-271.	1.3	112
139	Irradiated microstructure of alloy 800H. Journal of Nuclear Materials, 2006, 351, 223-227.	1.3	27
140	Microstructural development in advanced ferritic–martensitic steel HCM12A. Journal of Nuclear Materials, 2006, 351, 174-186.	1.3	22
141	Strain-rate effects on microstructural deformation in irradiated 316 SS. Journal of Nuclear Materials, 2006, 351, 316-323.	1.3	5
142	Corrosion of ferritic–martensitic steel HT9 in supercritical water. Journal of Nuclear Materials, 2006, 358, 227-234.	1.3	98
143	Microstructural examination of oxide layers formed on an oxide dispersion strengthened ferritic steel exposed to supercritical water. Journal of Nuclear Materials, 2006, 359, 50-58.	1.3	41
144	Computational Fluid Dynamics (CFD) Study of the Flow in an Annular Centrifugal Contactor. Separation Science and Technology, 2006, 41, 2225-2244.	1.3	32

#	Article	IF	CITATIONS
145	The Stability of 9Cr-ODS Oxide Particles Under Heavy-Ion Irradiation. Nuclear Science and Engineering, 2005, 151, 305-312.	0.5	35
146	Synergies Between Generation-IV and Advanced Fusion Power Plant Research Programs. Fusion Science and Technology, 2005, 47, 445-449.	0.6	0
147	Swelling and radiation-induced segregation in austentic alloys. Journal of Nuclear Materials, 2005, 342, 90-100.	1.3	50
148	An electron backscattered diffraction study of grain boundary-engineered INCOLOY alloy 800H. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1921-1925.	1.1	29
149	Mechanical Properties of 20% Cold-Worked 316 Stainless Steel Irradiated at Low Dose Rate. , 2002, , 253.		1
150	Emulation of neutron irradiation effects with protons: validation of principle. Journal of Nuclear Materials, 2002, 300, 198-216.	1.3	270
151	Variability of radiation-induced segregation in iron–chromium–nickel alloys. Journal of Nuclear Materials, 2000, 278, 149-163.	1.3	3
152	The effects of low dose rate irradiation and thermal aging on reactor structural alloys. Journal of Nuclear Materials, 1999, 270, 290-300.	1.3	14
153	Microchemistry and microstructure of proton-irradiated austenitic alloys: toward an understanding of irradiation effects in LWR core components. Journal of Nuclear Materials, 1999, 270, 96-114.	1.3	62
154	Dependence of radiation-induced segregation on dose, temperature and alloy composition in austenitic alloys. Journal of Nuclear Materials, 1995, 225, 97-107.	1.3	43
155	Radiation-induced segregation in multicomponent alloys: Effect of particle type. Materials Characterization, 1994, 32, 239-255.	1.9	45
156	Intercomparison of microchemical evolution under various types of particle irradiation. Journal of Nuclear Materials, 1993, 205, 332-338.	1.3	51
157	Development of Diffusion Barrier Coatings for Mitigation of Fuel-Cladding Chemical Interactions. Key Engineering Materials, 0, 507, 3-7.	0.4	13
158	Proton irradiation-induced blistering in UO2. MRS Advances, 0, , 1.	0.5	1