List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531602/publications.pdf Version: 2024-02-01

XAVIER ROMÁFO

#	Article	lF	CITATIONS
1	Field observations and interpretation of the structural performance of constructions after the 11 May 2011 Lorca earthquake. Engineering Failure Analysis, 2013, 34, 670-692.	1.8	114
2	An empirical power comparison of univariate goodness-of-fit tests for normality. Journal of Statistical Computation and Simulation, 2010, 80, 545-591.	0.7	84
3	Manipulating the Alpha Level Cannot Cure Significance Testing. Frontiers in Psychology, 2018, 9, 699.	1.1	64
4	A framework for the simplified risk analysis of cultural heritage assets. Journal of Cultural Heritage, 2016, 20, 696-708.	1.5	63
5	Flood risk assessment of cultural heritage at large spatial scales: Framework and application to mainland Portugal. Journal of Cultural Heritage, 2020, 43, 163-174.	1.5	49
6	Probabilistic design and reliability analysis of scour protections for offshore windfarms. Engineering Failure Analysis, 2018, 91, 291-305.	1.8	32
7	Assessing concrete strength variability in existing structures based on the results of NDTs. Construction and Building Materials, 2018, 173, 786-800.	3.2	32
8	Review of vulnerability indicators for fire risk assessment in cultural heritage. International Journal of Disaster Risk Reduction, 2021, 60, 102286.	1.8	26
9	Simplified hysteretic model for the representation of the biaxial bending response of RC columns. Engineering Structures, 2012, 44, 146-158.	2.6	25
10	Component-based flood vulnerability modelling for cultural heritage buildings. International Journal of Disaster Risk Reduction, 2021, 61, 102323.	1.8	25
11	How is collapse risk of RC buildings affected by the angle of seismic incidence?. Earthquake Engineering and Structural Dynamics, 2019, 48, 1575-1594.	2.5	23
12	Model of seismic design lateral force levels for the existing reinforced concrete European building stock. Bulletin of Earthquake Engineering, 2021, 19, 2839-2865.	2.3	23
13	Assessment of the concrete strength in existing buildings using a finite population approach. Construction and Building Materials, 2016, 110, 106-116.	3.2	21
14	The significance of considering multiple angles of seismic incidence for estimating engineering demand parameters. Bulletin of Earthquake Engineering, 2020, 18, 139-163.	2.3	21
15	Uncertainty quantification of fragility and risk estimates due to seismic input variability and capacity model uncertainty. Engineering Structures, 2019, 195, 425-437.	2.6	20
16	Reliability assessment of offshore dynamic scour protections using copulas. Wind Engineering, 2019, 43, 506-538.	1.1	20
17	Assessment of the Statistical Distributions of Structural Demand Under Earthquake Loading. Journal of Earthquake Engineering, 2011, 15, 724-753.	1.4	19
18	A comparative application of different EC8-3 procedures for the seismic safety assessment of existing structures. Bulletin of Earthquake Engineering, 2010, 8, 91-118.	2.3	18

#	Article	IF	CITATIONS
19	An Indicator for Post-disaster Economic Loss Valuation of Impacts on Cultural Heritage. International Journal of Architectural Heritage, 2021, 15, 678-697.	1.7	18
20	Analysis of the performance of strut models to simulate the seismic behaviour of masonry infills in partially infilled RC frames. Engineering Structures, 2020, 222, 111124.	2.6	17
21	Alternative closedâ€form solutions for the mean rate of exceedance of structural limit states. Earthquake Engineering and Structural Dynamics, 2013, 42, 1827-1845.	2.5	16
22	Critical orientation of earthquake loading for building performance assessment using lateral force analysis. Bulletin of Earthquake Engineering, 2017, 15, 5217-5246.	2.3	16
23	Vernacular Heritage and Earthen Architecture. , 0, , .		15
24	Evaluation of the EC8-3 confidence factors for the characterization of concrete strength in existing structures. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1737-1758.	1.3	14
25	Automatic detection of discordant outliers via the Ueda's method. Journal of Statistical Distributions and Applications, 2015, 2, .	1.2	14
26	A methodology for the probabilistic assessment of behaviour factors. Bulletin of Earthquake Engineering, 2010, 8, 47-64.	2.3	11
27	A framework to assess quality and uncertainty in disaster loss data. Natural Hazards, 2016, 83, 1077-1102.	1.6	10
28	Robust Calibration of Macro-Models for the In-Plane Behavior of Masonry Infilled RC Frames. Journal of Earthquake Engineering, 2021, 25, 407-433.	1.4	10
29	Estimation of the potential relevance of differential settlements in earthquake-induced liquefaction damage assessment. Engineering Structures, 2020, 211, 110232.	2.6	9
30	Risk evaluation on concrete strength assessment with NDT technique and conditional coring approach. Journal of Building Engineering, 2020, 32, 101541.	1.6	9
31	Statistical Characterization of Structural Demand under Earthquake Loading. Part 1: Robust Estimation of the Central Value of the Data. Journal of Earthquake Engineering, 2012, 16, 686-718.	1.4	8
32	Practical aspects of demand and capacity evaluation of RC members in the context of EC8â€3. Earthquake Engineering and Structural Dynamics, 2010, 39, 473-499.	2.5	7
33	Material strength safety factors for the seismic safety assessment of existing RC buildings. Construction and Building Materials, 2016, 119, 319-328.	3.2	7
34	Are seismic losses affected by the angle of seismic incidence?. Bulletin of Earthquake Engineering, 0, , 1.	2.3	7
35	Probabilistic Performance Analysis of Existing Buildings under Earthquake Loading. Journal of Earthquake Engineering, 2014, 18, 1241-1265.	1.4	6
36	Risk and Resilience in Practice: Cultural Heritage Buildings. International Journal of Architectural Heritage, 2021, 15, 973-975.	1.7	6

#	Article	IF	CITATIONS
37	Statistical Characterization of Structural Demand under Earthquake Loading. Part 2: Robust Estimation of the Dispersion of the Data. Journal of Earthquake Engineering, 2012, 16, 864-896.	1.4	5
38	Combining the bi-objective approach and conditional coring for a reliable estimation of on-site concrete strength variability. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	5
39	Analytical evaluation of structural component limit state probabilities. Bulletin of Earthquake Engineering, 2008, 6, 309-333.	2.3	4
40	OPEN MODELS AND SOFTWARE FOR ASSESSING THE VULNERABILITY OF THE EUROPEAN BUILDING STOCK. , 2021, , .		4
41	Seismic Fragility Functions for Non-Seismically Designed RC Structures Considering Pounding Effects. Buildings, 2021, 11, 665.	1.4	4
42	Damage localization length in RC frame components: Mechanical analysis and experimental observations. Engineering Structures, 2020, 221, 111026.	2.6	3
43	Understanding the Impacts of the October 2017 Portugal Wildfires on Cultural Heritage. Heritage, 2021, 4, 2580-2598.	0.9	3
44	In-Situ Strength Assessment of Concrete: Detailed Guidelines. RILEM State-of-the-Art Reports, 2021, , 3-56.	0.3	3
45	Ongoing research on seismic safety assessment. Bulletin of Earthquake Engineering, 2010, 8, 181-199.	2.3	2
46	CINPAR2016–strengthening and repair of structures. International Journal of Structural Integrity, 2018, 9, 278-280.	1.8	2
47	Simplified risk assessment of immovable cultural heritage assets. Conservar Patrimonio, 0, 25, 23-36.	0.5	2
48	Analysing the Critical Orientation of Seismic Loading in 3D Buildings: Preliminary Results for Constant Lateral Forces. U Porto Journal of Engineering, 2017, 2, 2-15.	0.2	2
49	Case study: Vernacular seismic culture in Chile. , 2015, , 105-106.		2
50	A importância da informação sobre os impactos das catástrofes - enquadramento no projeto europeu LODE. Estudos CindAÌ,inicos, 2020, , 267-282.	0.1	1
51	Smart Disaster Risk Reduction and Emergency Management in the Built Environment. Structural Integrity, 2022, , 315-340.	0.8	1
52	Integrated Graphical Environment for Support Nonlinear Dynamic Software for the Analysis of Plane Frames. International Journal of Simulation Modelling, 2007, 6, 102-113.	0.6	0
53	Foreword–ÂSelected papers of the conference Cultural HELP 2014–ÂCultural heritage and loss prevention. Journal of Cultural Heritage, 2016, 20, 694-695.	1.5	0
54	Code-Based Procedures for Seismic Safety Assessment and Retrofit. Building Pathology and Rehabilitation, 2018, , 301-320.	0.1	0

#	Article	IF	CITATIONS
55	How to Identify the Recommended Number of Cores?. RILEM State-of-the-Art Reports, 2021, , 57-99.	0.3	0
56	Model Identification and Calibration. RILEM State-of-the-Art Reports, 2021, , 341-357.	0.3	0
57	Identification of Test Regions and Choice of Conversion Models. RILEM State-of-the-Art Reports, 2021, , 117-160.	0.3	0
58	Illustration of the Proposed Methodology Based on Synthetic Data. RILEM State-of-the-Art Reports, 2021, , 279-302.	0.3	0
59	Identification and Processing of Outliers. RILEM State-of-the-Art Reports, 2021, , 161-180.	0.3	0
60	Illustration of the Proposed Methodology Based on a Real Case-Study. RILEM State-of-the-Art Reports, 2021, , 303-328.	0.3	0
61	For Those Who Want to Go Further. RILEM State-of-the-Art Reports, 2021, , 359-377.	0.3	0
62	Structural survey and diagnosis of historical constructions – the experience of the Construction Institute. Vitruvio, 2016, 1, 49.	0.2	0
63	NUMERICAL MODELLING OF THE DYNAMIC RESPONSE OF LIQUEFIABLE DEPOSITS IN THE PRESENCE OF SMALL SCALE BUILDINGS. , 2017, , .		0
64	Improving the Reliability of On-site Concrete Strength Estimation with Non-destructive Techniques. , 2018, , .		0