
## Kathleen E Mcgrath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531584/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Circulating primitive murine erythroblasts undergo complex proteomic and metabolomic changes during terminal maturation. Blood Advances, 2022, 6, 3072-3089.                                      | 2.5 | 6         |
| 2  | Modeling human yolk sac hematopoiesis with pluripotent stem cells. Journal of Experimental<br>Medicine, 2022, 219, .                                                                              | 4.2 | 25        |
| 3  | Lung megakaryocytes are immune modulatory cells. Journal of Clinical Investigation, 2021, 131, .                                                                                                  | 3.9 | 96        |
| 4  | β2M Signals Monocytes Through Non-Canonical TGFβ Receptor Signal Transduction. Circulation Research, 2021, 128, 655-669.                                                                          | 2.0 | 9         |
| 5  | Mds1, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Reports, 2021, 36, 109562.                                                                            | 2.9 | 7         |
| 6  | <i>Mds1 CreERT2</i> Based Lineage-Tracing Reveals Increasing Contributions of HSCs to Fetal<br>Hematopoiesis and to Adult Tissue-Resident Macrophages in the Marrow. Blood, 2021, 138, 2153-2153. | 0.6 | 2         |
| 7  | Circulating Primitive Erythroblasts in the Murine Embryo Undergo Complex Proteomic and<br>Metabolomic Changes during Terminal Maturation. Blood, 2021, 138, 851-851.                              | 0.6 | 0         |
| 8  | Adult, but Not Neonatal, Platelet Transfusions Drive a Monocyte Trafficking Phenotype in Vitro and In<br>Vivo. Blood, 2021, 138, 2144-2144.                                                       | 0.6 | 1         |
| 9  | Potently Cytotoxic Natural Killer Cells Initially Emerge from Erythro-Myeloid Progenitors during<br>Mammalian Development. Developmental Cell, 2020, 53, 229-239.e7.                              | 3.1 | 63        |
| 10 | Lin28b regulates age-dependent differences in murine platelet function. Blood Advances, 2019, 3, 72-82.                                                                                           | 2.5 | 22        |
| 11 | Platelet-derived β2M regulates monocyte inflammatory responses. JCI Insight, 2019, 4, .                                                                                                           | 2.3 | 27        |
| 12 | Potently Cytotoxic Natural Killer Cell Potential Initially Emerges from Erythro-Myeloid Progenitors<br>during Mammalian Development. Blood, 2019, 134, 2464-2464.                                 | 0.6 | 0         |
| 13 | Megakaryopoiesis and Platelet-Innate Immune Cell Interactions Are Developmentally Regulated. Blood, 2019, 134, 2470-2470.                                                                         | 0.6 | 0         |
| 14 | Analysis of Erythropoiesis Using Imaging Flow Cytometry. Methods in Molecular Biology, 2018, 1698, 175-192.                                                                                       | 0.4 | 7         |
| 15 | EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nature Communications, 2018, 9, 4239.                                                                        | 5.8 | 39        |
| 16 | Kit ligand has a critical role in mouse yolk sac and aorta–gonad–mesonephros hematopoiesis. EMBO<br>Reports, 2018, 19, .                                                                          | 2.0 | 35        |
| 17 | Ontogeny As a Critical Determinant of Natural Killer Cell Potential and Function. Blood, 2018, 132, 1271-1271.                                                                                    | 0.6 | 0         |
| 18 | Definitive EMP and Pre-HSC Emerge in Myb-Null Murine Embryos and Retain Macrophage Potential.<br>Blood, 2018, 132, 2556-2556.                                                                     | 0.6 | 1         |

KATHLEEN E MCGRATH

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Scientific Reports, 2017, 7, 5164.                                              | 1.6 | 13        |
| 20 | EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood, 2016, 128, 1631-1641.                                                                                                   | 0.6 | 64        |
| 21 | Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium<br>Independently of Circulation and Arterial Identity. Stem Cells, 2016, 34, 431-444.                              | 1.4 | 141       |
| 22 | lmaging Flow Cytometric Analysis of Primary Bone Marrow Megakaryocytes. Methods in Molecular<br>Biology, 2016, 1389, 265-277.                                                                                 | 0.4 | 2         |
| 23 | Stat5 and Stat3 Differentially Regulate Early and Late Stages of Primary Embryonic Erythroid Cell<br>Maturation. Blood, 2016, 128, 3877-3877.                                                                 | 0.6 | Ο         |
| 24 | Early hematopoiesis and macrophage development. Seminars in Immunology, 2015, 27, 379-387.                                                                                                                    | 2.7 | 124       |
| 25 | Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 2015, 4, 995-1003.                                                                                                                       | 2.3 | 19        |
| 26 | Distinct Sources of Hematopoietic Progenitors Emerge before HSCs and Provide Functional Blood<br>Cells in the Mammalian Embryo. Cell Reports, 2015, 11, 1892-1904.                                            | 2.9 | 317       |
| 27 | Utilization of imaging flow cytometry to define intermediates of megakaryopoiesis in vivo and in vitro. Journal of Immunological Methods, 2015, 423, 45-51.                                                   | 0.6 | 7         |
| 28 | A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis. PLoS<br>Genetics, 2015, 11, e1005526.                                                                        | 1.5 | 55        |
| 29 | Definitive Erythro-Myeloid Progenitors (EMPs) Emerge in the Myb-/- Embryo and Retain the Capacity to<br>Differentiate into Macrophages. Blood, 2015, 126, 2372-2372.                                          | 0.6 | 0         |
| 30 | Red cell island dances: switching hands. Blood, 2014, 123, 3847-3848.                                                                                                                                         | 0.6 | 7         |
| 31 | P-Selectin Expression and Platelet Function Are Developmentally Regulated. Blood, 2014, 124, 1439-1439.                                                                                                       | 0.6 | 3         |
| 32 | EMP Emergence from Hemogenic Endothelium in the Mammalian Yolk Sac Is Independent of Flow and<br>Arterial Identity, but Is Regulated By Canonical Wnt Signaling. Blood, 2014, 124, 768-768.                   | 0.6 | 1         |
| 33 | A Systems Approach Identifies Essential FOXO3 Functions in Erythroblast Enucleation Process. Blood, 2014, 124, 445-445.                                                                                       | 0.6 | 6         |
| 34 | Embryologic Origin of Functional Granulopoiesis. Blood, 2014, 124, 228-228.                                                                                                                                   | 0.6 | 0         |
| 35 | Temporal-Spatial Mapping Of Hematopoietic Progenitors In The Embryo Reveals a Differentially<br>Regulated Program Of Endothelial-To-Hematopoietic Transition In The Yolk Sac. Blood, 2013, 122,<br>1178-1178. | 0.6 | 2         |
| 36 | Spatial and Temporal Fluctuations In Marrow SDF-1 Following Radiation Injury Regulate<br>Megakaryocyte-Vascular Niche Interactions and Circulating Platelet Levels. Blood, 2013, 122, 568-568.                | 0.6 | 1         |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Erythroid Lineage Cells Are Found In Close Association With Bone In The Marrow Microenvironment.<br>Blood, 2013, 122, 945-945.                                                                                                     | 0.6 | 0         |
| 38 | SDF-1 Acutely Promotes the Physical Association of Megakaryocytes with Vascular Endothelium in the Bone Marrow and Increases the Number of Circulating Platelets Blood, 2012, 120, 2306-2306.                                      | 0.6 | 0         |
| 39 | Megakaryopoiesis in the Mammalian Embryo Is Distinguished From the Adult by Rapid Maturation At<br>Low Ploidy and Generates Platelets with Altered Morphology and Function Blood, 2012, 120,<br>2305-2305.                         | 0.6 | 0         |
| 40 | A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian<br>embryo. Blood, 2011, 117, 4600-4608.                                                                                     | 0.6 | 131       |
| 41 | Definitive Erythro-Myeloid Progenitors (EMP) Emerge in the Yolk Sac From Hemogenic Endothelium<br>and Share Transcriptional Regulators with Adult Hematopoiesis. Blood, 2011, 118, 910-910.                                        | 0.6 | 0         |
| 42 | EPO-Dependent Recovery of Late-Stage Erythroid Progenitors in the Marrow Precedes Splenic<br>Expansion: Insights From a Sublethal Radiation Model. Blood, 2011, 118, 180-180.                                                      | 0.6 | 6         |
| 43 | Definitive Hematopoiesis In the Mammalian Embryo Prior to HSC Formation Blood, 2010, 116, 1599-1599.                                                                                                                               | 0.6 | 0         |
| 44 | Erythropoietin Induction by Anemia Is Required for CFU-E Expansion During Erythroid Recovery From<br>Sublethal Radiation Injury. Blood, 2010, 116, 3218-3218.                                                                      | 0.6 | 0         |
| 45 | "Definitive―Erythropoiesis Has Distinct Developmental Origins and Globin Expression Patterns in the<br>Mammalian Embryo Blood, 2009, 114, 2539-2539.                                                                               | 0.6 | 0         |
| 46 | Multispectral imaging of hematopoietic cells: Where flow meets morphology. Journal of<br>Immunological Methods, 2008, 336, 91-97.                                                                                                  | 0.6 | 120       |
| 47 | Chapter 1 Ontogeny of Erythropoiesis in the Mammalian Embryo. Current Topics in Developmental<br>Biology, 2008, 82, 1-22.                                                                                                          | 1.0 | 96        |
| 48 | Enucleation of primitive erythroid cells generates a transient population of "pyrenocytes―in the<br>mammalian fetus. Blood, 2008, 111, 2409-2417.                                                                                  | 0.6 | 112       |
| 49 | The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood, 2007, 109, 1433-1441.                                                    | 0.6 | 259       |
| 50 | Enucleation of Primitive Erythroid Cells Generates a Transient Population of "Pyrenocytes―in the<br>Mammalian Fetus Blood, 2007, 110, 425-425.                                                                                     | 0.6 | 0         |
| 51 | Response of the Erythroid Lineage to Irradiation Blood, 2007, 110, 3660-3660.                                                                                                                                                      | 0.6 | 0         |
| 52 | Diverse Myeloid Lineage Potential Arises in the Yolk Sac of the Mammalian Embryo Blood, 2006, 108,<br>1666-1666.                                                                                                                   | 0.6 | 0         |
| 53 | Hematopoiesis in the yolk sac: more than meets the eye. Experimental Hematology, 2005, 33, 1021-1028.                                                                                                                              | 0.2 | 144       |
| 54 | Circulation Plays an Essential Role in Distributing Mammalian Yolk Sac Definitive Hematopoietic<br>Progenitor Cells to the Embryo Proper; Using the Ncx1 Knockout Mouse Model To Prevent<br>Circulation Blood, 2005, 106, 517-517. | 0.6 | 3         |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | "Maturational―Globin Switching in Primary Primitive Erythroid Cells Blood, 2005, 106, 3634-3634.                                                                                                | 0.6 | Ο         |
| 56 | Circulation is established in a stepwise pattern in the mammalian embryo. Blood, 2003, 101, 1669-1675.                                                                                          | 0.6 | 249       |
| 57 | Subtractive hybridization reveals tissue-specific expression of ahnak during embryonic development.<br>Development Growth and Differentiation, 2001, 43, 133-143.                               | 0.6 | 25        |
| 58 | Expression of homeobox genes, including an insulin promoting factor, in the murine yolk sac at the time of hematopoietic initiation. Molecular Reproduction and Development, 1997, 48, 145-153. | 1.0 | 46        |