Catherine B Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531421/publications.pdf

Version: 2024-02-01

68 papers 3,802 citations

36 h-index 60 g-index

72 all docs 72 docs citations

times ranked

72

5180 citing authors

#	Article	IF	CITATIONS
1	<scp>LRRC8A</scp> is dispensable for a variety of microglial functions and response to acute stroke. Glia, 2022, 70, 1068-1083.	4.9	7
2	The two pore potassium channel <scp>THIK</scp> â€1 regulates <scp>NLRP3</scp> inflammasome activation. Glia, 2022, 70, 1301-1316.	4.9	19
3	A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clinical and Experimental Immunology, 2021, 203, 458-471.	2.6	7
4	Inhibition of the NLRP3 inflammasome by HSP90 inhibitors. Immunology, 2021, 162, 84-91.	4.4	36
5	Zinc Status Alters Alzheimer's Disease Progression through NLRP3-Dependent Inflammation. Journal of Neuroscience, 2021, 41, 3025-3038.	3.6	41
6	Nanoparticle-Enabled Enrichment of Longitudinal Blood Proteomic Fingerprints in Alzheimer's Disease. ACS Nano, 2021, 15, 7357-7369.	14.6	17
7	Response to correspondence on "Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation― Genome Biology, 2021, 22, 99.	8.8	4
8	Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research. Advanced Healthcare Materials, 2021, 10, e2100455.	7.6	13
9	Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study. Theranostics, 2021, 11, 6644-6667.	10.0	42
10	Ligature-induced periodontitis induces systemic inflammation but does not alter acute outcome after stroke in mice. International Journal of Stroke, 2020, 15, 175-187.	5.9	18
11	Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice. Translational Stroke Research, 2020, 11, 837-850.	4.2	19
12	Anti-inflammatories in Alzheimer's disease—potential therapy or spurious correlate?. Brain Communications, 2020, 2, fcaa109.	3.3	52
13	Selective inhibition of the K ⁺ efflux sensitive NLRP3 pathway by Cl ^{â^'} channel modulation. Chemical Science, 2020, 11, 11720-11728.	7.4	9
14	Comorbidity and age in the modelling of stroke: are we still failing to consider the characteristics of stroke patients? Comorbidity and age in the modelling of stroke: are we still failing to consider the characteristics of stroke patients? BMJ Open Science, 2020, 44, e100013.	1.7	11
15	UK consensus on pre-clinical vascular cognitive impairment functional outcomes assessment: Questionnaire and workshop proceedings. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1402-1414.	4.3	4
16	Therapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysisTherapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysis. BMJ Open Science, 2020, 44, e100047.	1.7	12
17	LRRC8A is essential for hypotonicity-, but not for DAMP-induced NLRP3 inflammasome activation. ELife, 2020, 9, .	6.0	29
18	Proteolysis of the low density lipoprotein receptor by bone morphogenetic protein-1 regulates cellular cholesterol uptake. Scientific Reports, 2019, 9, 11416.	3.3	13

#	Article	IF	CITATIONS
19	Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscape. Frontiers in Neurology, 2019, 10, 718.	2.4	29
20	Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biology, 2019, 20, 171.	8.8	69
21	Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1026-1037.	4.3	27
22	Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9371-E9380.	7.1	131
23	Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery?. SLAS Discovery, 2018, 23, 991-1017.	2.7	17
24	The bloodâ€"brain barrier after stroke: Structural studies and the role of transcytotic vesicles. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 456-470.	4.3	168
25	Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Scientific Reports, 2017, 7, 44571.	3.3	78
26	Inflammasomes as therapeutic targets for <scp>A</scp> lzheimer's disease. Brain Pathology, 2017, 27, 223-234.	4.1	110
27	Boron-Based Inhibitors of the NLRP3 Inflammasome. Cell Chemical Biology, 2017, 24, 1321-1335.e5.	5.2	77
28	Adipose tissue, metabolic and inflammatory responses to stroke are altered in obese mice. DMM Disease Models and Mechanisms, 2017, 10, 1229-1243.	2.4	18
29	Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer's disease: metabolic basis for dementia. Scientific Reports, 2016, 6, 27524.	3 . 3	68
30	Obesity and stroke: Can we translate from rodents to patients?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2007-2021.	4.3	49
31	Elevated Hypothalamic Glucocorticoid Levels Are Associated With Obesity and Hyperphagia in Male Mice. Endocrinology, 2016, 157, 4257-4265.	2.8	33
32	Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nature Communications, 2016, 7, 12504.	12.8	328
33	Mitochondrial Abnormalities and Synaptic Loss Underlie Memory Deficits Seen in Mouse Models of Obesity and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 915-932.	2.6	55
34	Systemic inflammation affects reperfusion following transient cerebral ischaemia. Experimental Neurology, 2016, 277, 252-260.	4.1	23
35	Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. Journal of Neuroinflammation, 2015, 12, 140.	7.2	55
36	The Contribution of Raised Metabolic Rate in the Weight Loss Associated with Alzheimer's Disease. , 2015, , 479-486.		1

#	Article	IF	CITATIONS
37	Zinc depletion regulates the processing and secretion of IL- $1\hat{l}^2$. Cell Death and Disease, 2014, 5, e1040-e1040.	6.3	78
38	High-fat diet-induced memory impairment in triple-transgenic Alzheimer's disease (3xTgAD) mice isAindependent of changes in amyloid and tau pathology. Neurobiology of Aging, 2014, 35, 1821-1832.	3.1	189
39	Maternal High-Fat Diet Worsens Memory Deficits in the Triple-Transgenic (3xTgAD) Mouse Model of Alzheimer's Disease. PLoS ONE, 2014, 9, e99226.	2.5	33
40	The Immune System in Stroke: Clinical Challenges and Their Translation to Experimental Research. Journal of NeuroImmune Pharmacology, 2013, 8, 867-887.	4.1	40
41	Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice. DMM Disease Models and Mechanisms, 2012, 6, 160-70.	2.4	52
42	Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide. DMM Disease Models and Mechanisms, 2012, 5, 649-59.	2.4	69
43	Hypermetabolism in a triple-transgenic mouse model of Alzheimer's disease. Neurobiology of Aging, 2012, 33, 187-193.	3.1	46
44	Impaired Satiation and Increased Feeding Behaviour in the Triple-Transgenic Alzheimer's Disease Mouse Model. PLoS ONE, 2012, 7, e45179.	2.5	33
45	Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction. Frontiers in Neuroendocrinology, 2011, 32, 1-9.	5.2	42
46	Letter by McColl et al Regarding Article, "Influenza Virus Infection Aggravates Stroke Outcome― Stroke, 2011, 42, e416; author reply e417.	2.0	3
47	Increased Brain Microvascular MMP-9 and Incidence of Haemorrhagic Transformation in Obese Mice after Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 267-272.	4.3	63
48	Galanin-Like Peptide: Neural Regulator of Energy Homeostasis and Reproduction. Exs, 2010, 102, 263-280.	1.4	4
49	Galanin-like peptide modulates energy balance by affecting inflammatory mediators?. Physiology and Behavior, 2009, 97, 515-519.	2.1	4
50	The Effects of Galaninâ€Like Peptide on Energy Balance, Body Temperature and Brain Activity in the Mouse and Rat Are Independent of the GALR2/3 Receptor. Journal of Neuroendocrinology, 2008, 20, 128-137.	2.6	38
51	Galanin-like peptide: A role in the homeostatic regulation of energy balance?. Neuropharmacology, 2008, 55, 1-7.	4.1	13
52	Interleukin-1 Mediates the Anorexic and Febrile Actions of Galanin-Like Peptide. Endocrinology, 2008, 149, 5791-5802.	2.8	20
53	Agouti-Related Protein Is Posttranslationally Cleaved by Proprotein Convertase 1 to Generate Agouti-Related Protein (AGRP)83–132: Interaction between AGRP83–132 and Melanocortin Receptors Cannot Be Influenced by Syndecan-3. Endocrinology, 2006, 147, 1621-1631.	2.8	102
54	Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R101-R107.	1.8	62

#	Article	IF	Citations
55	IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. Journal of Neuroimmunology, 2003, 139, 36-43.	2.3	42
56	Proopiomelanocortin-Derived Peptides in Rat Cerebrospinal Fluid and Hypothalamic Extracts: Evidence that Secretion Is Regulated with Respect to Energy Balance. Endocrinology, 2003, 144, 760-766.	2.8	64
57	Anorectic brainstem peptides: more pieces to the puzzle. Trends in Endocrinology and Metabolism, 2003, 14, 60-65.	7.1	36
58	Intracerebroventricular Galanin-Like Peptide Induces Different Brain Activation Compared with Galanin. Endocrinology, 2003, 144, 3977-3984.	2.8	54
59	Repeated administration of the anorectic factor prolactin-releasing peptide leads to tolerance to its effects on energy homeostasis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R1005-R1010.	1.8	29
60	Evaluation of Neuromedin U Actions in Energy Homeostasis and Pituitary Function. Endocrinology, 2002, 143, 3813-3821.	2.8	95
61	PRL-Releasing Peptide Reduces Food Intake and May Mediate Satiety Signaling. Endocrinology, 2002, 143, 360-367.	2.8	126
62	PRL-Releasing Peptide Interacts with Leptin to Reduce Food Intake and Body Weight. Endocrinology, 2002, 143, 368-374.	2.8	104
63	Centrally Administered Galaninâ€Like Peptide Modifies Food Intake in the Rat: A Comparison with Galanin. Journal of Neuroendocrinology, 2002, 14, 853-860.	2.6	101
64	Acute Central Ghrelin and GH Secretagogues Induce Feeding and Activate Brain Appetite Centers. Endocrinology, 2002, 143, 155-162.	2.8	139
65	PRL-Releasing Peptide Reduces Food Intake and May Mediate Satiety Signaling. Endocrinology, 2002, 143, 360-367.	2.8	42
66	Anorexic But Not Pyrogenic Actions of Interleukinâ€1 are Modulated by Central Melanocortinâ€3/4 Receptors in the Rat. Journal of Neuroendocrinology, 2001, 13, 490-495.	2.6	82
67	Alternative role for prolactin-releasing peptide in the regulation of food intake. Nature Neuroscience, 2000, 3, 645-646.	14.8	200
68	Hypothalamic control of feeding. Current Opinion in Neurobiology, 1999, 9, 778-783.	4.2	60