
Carsten R Kreyenschulte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3531037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reductive Amination, Hydrogenation and Hydrodeoxygenation of 5â€Hydroxymethylfurfural using Silicaâ€supported Cobalt―Nanoparticles. ChemCatChem, 2022, 14, .	1.8	19
2	Effects of modifier (Cd, Sc, La) addition on the stability of low Ni content catalyst for dry reforming of model biogas. Fuel, 2022, 312, 122823.	3.4	8
3	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	6.6	56
4	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	1.8	33
5	Cobalt-catalysed CH-alkylation of indoles with alcohols by borrowing hydrogen methodology. Green Chemistry, 2022, 24, 4566-4572.	4.6	19
6	Elucidating the effects of individual components in K _{<i>x</i>} MnO _{<i>y</i>} /SiO ₂ and water on selectivity enhancement in the oxidative coupling of methane. Catalysis Science and Technology, 2021, 11, 5827-5838.	2.1	6
7	Development and Application of Efficient Agâ€based Hydrogenation Catalysts Prepared from Rice Husk Waste. ChemCatChem, 2021, 13, 2583-2591.	1.8	9
8	Preparation, Characterization and Antimicrobial Properties of Nanosized Silver ontaining Carbon/Silica Composites from Rice Husk Waste. ChemistryOpen, 2021, 10, 1244-1250.	0.9	5
9	The Effect of Iron and Vanadium in VO y /Ce 1â€x Fe x O 2â€Î´ Catalysts in Lowâ€Temperature Selective Catalytic Reduction of NO x by Ammonia. ChemCatChem, 2020, 12, 2440-2451.	1.8	5
10	Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124383.	2.3	5
11	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie, 2020, 132, 18838-18844.	1.6	6
12	Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angewandte Chemie - International Edition, 2020, 59, 18679-18685.	7.2	27
13	A Ceneral Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie, 2020, 132, 17561-17565.	1.6	8
14	A General Catalyst Based on Cobalt Core–Shell Nanoparticles for the Hydrogenation of Nâ€Heteroarenes Including Pyridines. Angewandte Chemie - International Edition, 2020, 59, 17408-17412.	7.2	58
15	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	3.7	12
16	Revisiting Activity- and Selectivity-Enhancing Effects of Water in the Oxidative Coupling of Methane over MnO <i>_x</i> -Na ₂ WO ₄ /SiO ₂ and Proving for Other Materials. ACS Catalysis, 2020, 10, 8751-8764.	5.5	33
17	Development of Highly Stable Low Ni Content Catalyst for Dry Reforming of CH ₄ â€Rich Feedstocks. ChemCatChem, 2020, 12, 1562-1568.	1.8	12
18	Towards a practical perfluoroalkylation of (hetero)arenes with perfluoroalkyl bromides using cobalt nanocatalysts. Catalysis Science and Technology, 2020, 10, 1731-1738.	2.1	10

#	Article	IF	CITATIONS
19	Alcohol Synthesis from CO ₂ , H ₂ , and Olefins over Alkaliâ€Promoted Au Catalysts—A Catalytic and Inâ€situ FTIR Spectroscopic Study. ChemSusChem, 2019, 12, 651-660.	3.6	10
20	Cobalt-Nanoparticles Catalyzed Efficient and Selective Hydrogenation of Aromatic Hydrocarbons. ACS Catalysis, 2019, 9, 8581-8591.	5.5	52
21	Zinc single atoms on N-doped carbon: An efficient and stable catalyst for CO2 fixation and conversion. Chinese Journal of Catalysis, 2019, 40, 1679-1685.	6.9	27
22	Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green Chemistry, 2019, 21, 5104-5112.	4.6	11
23	Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production. Catalysts, 2019, 9, 695.	1.6	15
24	Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry and Engineering, 2019, 7, 17107-17113.	3.2	12
25	Sustainable Coâ€Synthesis of Glycolic Acid, Formamides and Formates from 1,3â€Dihydroxyacetone by a Cu/Al ₂ O ₃ Catalyst with a Single Active Sites. Angewandte Chemie - International Edition, 2019, 58, 5251-5255.	7.2	38
26	Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania. Journal of Sol-Gel Science and Technology, 2019, 91, 539-551.	1.1	10
27	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	5.5	56
28	Heterogeneous nickel-catalysed reversible, acceptorless dehydrogenation of N-heterocycles for hydrogen storage. Chemical Communications, 2019, 55, 4969-4972.	2.2	47
29	Supported Cobalt Nanoparticles for Hydroformylation Reactions. Chemistry - A European Journal, 2019, 25, 5534-5538.	1.7	34
30	Light-driven proton reduction with in situ supported copper nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 31892-31901.	3.8	0
31	Stabilization of low nickel content catalysts with lanthanum and by citric acid assisted preparation to suppress deactivation in dry reforming of methane. Catalysis Today, 2019, 334, 203-214.	2.2	28
32	Influence of V-sources on the catalytic performance of VMCM-41 in the selective oxidation of methane to formaldehyde. Catalysis Communications, 2018, 103, 56-59.	1.6	18
33	Synthesis of cobalt nanoparticles by pyrolysis of vitamin B ₁₂ : a non-noble-metal catalyst for efficient hydrogenation of nitriles. Catalysis Science and Technology, 2018, 8, 499-507.	2.1	34
34	Hydrogenation of terminal and internal olefins using a biowaste-derived heterogeneous cobalt catalyst. Science Advances, 2018, 4, eaau1248.	4.7	37
35	A robust iron catalyst for the selective hydrogenation of substituted (iso)quinolones. Chemical Science, 2018, 9, 8134-8141.	3.7	63
36	Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts, 2018, 8, 52.	1.6	10

#	Article	IF	CITATIONS
37	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€Supported Cobalt Catalyst. Angewandte Chemie, 2018, 130, 14696-14700.	1.6	7
38	Hydrogenation of Pyridines Using a Nitrogenâ€Modified Titaniaâ€Supported Cobalt Catalyst. Angewandte Chemie - International Edition, 2018, 57, 14488-14492.	7.2	42
39	Selective Semihydrogenation of Alkynes with N-Graphitic-Modified Cobalt Nanoparticles Supported on Silica. ACS Catalysis, 2017, 7, 1526-1532.	5.5	110
40	H ₂ Generation with (Mixed) Plasmonic Cu/Auâ€TiO ₂ Photocatalysts: Structure–Reactivity Relationships Assessed by in situ Spectroscopy. ChemCatChem, 2017, 9, 1025-1031.	1.8	27
41	Synthesis of Single Atom Based Heterogeneous Platinum Catalysts: High Selectivity and Activity for Hydrosilylation Reactions. ACS Central Science, 2017, 3, 580-585.	5.3	130
42	Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chemical Science, 2017, 8, 6239-6246.	3.7	83
43	Understanding the Performance and Stability of Supported Ni-Co-Based Catalysts in Phenol HDO. Catalysts, 2016, 6, 176.	1.6	23
44	Probing the Structural Changes and Redox Behavior of Mixed Molybdate Catalysts under Ammoxidation Conditions: An Operando Raman Spectroscopy Study. ChemCatChem, 2016, 8, 976-983.	1.8	15
45	Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chemical Communications, 2016, 52, 12729-12732.	2.2	25
46	Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix. Nature Communications, 2016, 7, 11326.	5.8	179
47	Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and Câ•O Bonds. Journal of the American Chemical Society, 2016, 138, 8781-8788.	6.6	118
48	Propanol formation from CO2 and C2H4 with H2 over Au/TiO2: Effect of support and K doping. Catalysis Today, 2015, 258, 684-690.	2.2	12