Stefania Albonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3530948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steam reforming of clean biogas over Rh and Ru open-cell metallic foam structured catalysts. Catalysis Today, 2022, 383, 74-83.	4.4	11
2	Chlorella vulgaris meets TiO2 NPs: Effective sorbent/photocatalytic hybrid materials for water treatment application. Journal of Environmental Management, 2022, 304, 114187.	7.8	7
3	Catalytic Upgrading of Clean Biogas to Synthesis Gas. Catalysts, 2022, 12, 109.	3.5	7
4	Insights into the Electrochemical Reduction of 5â€Hydroxymethylfurfural at High Current Densities. ChemSusChem, 2022, 15, .	6.8	14
5	Effect of the Colloidal Preparation Method for Supported Preformed Colloidal Au Nanoparticles for the Liquid Phase Oxidation of 1,6-Hexanediol to Adipic Acid. Catalysts, 2022, 12, 196.	3.5	11
6	Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. Catalysts, 2022, 12, 323.	3.5	5
7	A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle. Energies, 2022, 15, 3044.	3.1	11
8	Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528, 112438.	2.0	3
9	Preface to Special Issue on Green Conversion of HMF. ChemSusChem, 2022, 15, .	6.8	10
10	Copper-nickel mixed oxide catalysts from layered double hydroxides for the hydrogen-transfer valorisation of lignin in organosolv pulping. Applied Catalysis A: General, 2021, 609, 117929.	4.3	16
11	Transition Metal B-Site Substitutions in LaAlO3 Perovskites Reorient Bio-Ethanol Conversion Reactions. Catalysts, 2021, 11, 344.	3.5	9
12	Catalytic Transformation of Renewables (Olefin, Bio-Sourced, et al.). Catalysts, 2021, 11, 364.	3.5	0
13	Highly-dispersed ultrafine Pt nanoparticles on microemulsion-mediated TiO2 for production of hydrogen and valuable chemicals via oxidative photo-dehydrogenation of glycerol. Journal of Environmental Chemical Engineering, 2021, 9, 105070.	6.7	16
14	AgCu Bimetallic Electrocatalysts for the Reduction of Biomass-Derived Compounds. ACS Applied Materials & Interfaces, 2021, 13, 23675-23688.	8.0	35
15	Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M = Cu, Ni, Co) and their catalytic activity in N2O decomposition. Journal of Materials Science, 2021, 56, 15012-15028.	3.7	8
16	Solar-driven valorization of glycerol towards production of chemicals and hydrogen. Catalysis Today, 2021, 380, 147-155.	4.4	16
17	Effect of Gold Particles Size over Au/C Catalyst Selectivity in HMF Oxidation Reaction. ChemCatChem, 2020, 12, 1177-1183.	3.7	39
18	Continuous Flow Synthesis of Bimetallic AuPd Catalysts for the Selective Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid. ChemNanoMat, 2020, 6, 420-426.	2.8	17

#	Article	IF	CITATIONS
19	Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO2-Based Materials. Molecules, 2020, 25, 5225.	3.8	12
20	Combined Reforming of Clean Biogas over Nanosized Ni–Rh Bimetallic Clusters. Catalysts, 2020, 10, 1345.	3.5	6
21	MCM-41 Supported Co-Based Bimetallic Catalysts for Aqueous Phase Transformation of Glucose to Biochemicals. Processes, 2020, 8, 843.	2.8	9
22	Scale-Up of Cluster Beam Deposition to the Gram Scale with the Matrix Assembly Cluster Source for Heterogeneous Catalysis (Catalytic Ozonation of Nitrophenol in Aqueous Solution). ACS Applied Materials & Interfaces, 2020, 12, 24877-24882.	8.0	15
23	Preformed Pd-Based Nanoparticles for the Liquid Phase Decomposition of Formic Acid: Effect of Stabiliser, Support and Au–Pd Ratio. Applied Sciences (Switzerland), 2020, 10, 1752.	2.5	10
24	5-Hydroxymethyl-2-Furfural Oxidation Over Au/CexZr1-xO2 Catalysts. Frontiers in Chemistry, 2020, 8, 461.	3.6	8
25	Ag Electrodeposited on Cu Open ell Foams for the Selective Electroreduction of 5â€Hydroxymethylfurfural. ChemElectroChem, 2020, 7, 1238-1247.	3.4	23
26	Superacid Aquivion® PFSA as an efficient catalyst for the gas phase dehydration of ethanol to ethylene in mild conditions. Applied Catalysis A: General, 2020, 597, 117544.	4.3	5
27	Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural. Processes, 2020, 8, 45.	2.8	16
28	Insights into coated NiCrAl open-cell foams for the catalytic partial oxidation of CH ₄ . Reaction Chemistry and Engineering, 2019, 4, 1768-1778.	3.7	8
29	Tandem Hydrogenation/Hydrogenolysis of Furfural to 2-Methylfuran over a Fe/Mg/O Catalyst: Structure–Activity Relationship. Catalysts, 2019, 9, 895.	3.5	18
30	Pt and Pt/Sn carbonyl clusters as precursors for the synthesis of supported metal catalysts for the base-free oxidation of HMF. Applied Catalysis A: General, 2019, 588, 117279.	4.3	34
31	AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. Green Chemistry, 2019, 21, 4090-4099.	9.0	62
32	Gas-Phase Catalytic Transfer Hydrogenation of Methyl Levulinate with Ethanol over ZrO ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 8317-8330.	6.7	36
33	Mechanistic insights into the catalytic transfer hydrogenation of furfural with methanol and alkaline earth oxides. Journal of Catalysis, 2019, 372, 61-73.	6.2	44
34	Conversion of CO2 to Valuable Chemicals: Organic Carbonate as Green Candidates for the Replacement of Noxious Reactants. Studies in Surface Science and Catalysis, 2019, , 125-144.	1.5	10
35	Spinel Mixed Oxides for Chemical-Loop Reforming: From Solid State to Potential Application. Studies in Surface Science and Catalysis, 2019, 178, 281-302.	1.5	34
36	Hydrogen Transfer Reaction as an Alternative Reductive Process for the Valorization of Biomass-Derived Building Blocks. Studies in Surface Science and Catalysis, 2019, , 195-214.	1.5	4

#	Article	IF	CITATIONS
37	Heterogeneous Catalysis as a Tool for Production of Aromatic Compounds From Lignin. Studies in Surface Science and Catalysis, 2019, 178, 257-275.	1.5	11
38	Innovative synthesis of nanostructured composite materials by a spray-freeze drying process: Efficient catalysts and photocatalysts preparation. Catalysis Today, 2019, 334, 193-202.	4.4	16
39	Au/Al2O3 – Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid. Catalysis Today, 2019, 333, 169-175.	4.4	41
40	The oxidative cleavage of trans-1,2-cyclohexanediol with O2: Catalysis by supported Au nanoparticles. Applied Catalysis A: General, 2018, 557, 89-98.	4.3	26
41	Selective Oxidation of HMF via Catalytic and Photocatalytic Processes Using Metal-Supported Catalysts. Molecules, 2018, 23, 2792.	3.8	42
42	Mixed-Oxide Catalysts with Spinel Structure for the Valorization of Biomass: The Chemical-Loop Reforming of Bioethanol. Catalysts, 2018, 8, 332.	3.5	46
43	Understanding the Role of the Acid Sites in 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid Reaction over Gold Catalysts: Surface Investigation on Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ Compounds. ACS Catalysis, 2018, 8, 11154-11164.	11.2	55
44	Investigation of the Catalytic Performance of Pd/CNFs for Hydrogen Evolution from Additive-Free Formic Acid Decomposition. Journal of Carbon Research, 2018, 4, 26.	2.7	13
45	Coprecipitated-like hydrotalcite-derived coatings on open-cell metallic foams by electrodeposition: Rh nanoparticles on oxide layers stable under harsh reaction conditions. Applied Catalysis A: General, 2018, 560, 12-20.	4.3	16
46	Structural Changes of Binary/Ternary Spinel Oxides During Ethanol Anaerobic Decomposition. ChemCatChem, 2017, 9, 2219-2230.	3.7	15
47	Insights into the Synthesis and Surface Functionalization of Mesoporous Carbon for Catalytic Applications. ChemistrySelect, 2017, 2, 7590-7596.	1.5	1
48	Exploiting H-transfer as a tool for the catalytic reduction of bio-based building blocks: the gas-phase production of 2-methylfurfural using a FeVO ₄ catalyst. Green Chemistry, 2017, 19, 4412-4422.	9.0	35
49	Efficient and ecofriendly route for the solvent-free synthesis of piperonal and aromatic aldehydes using Au/CeO2 catalyst. Applied Catalysis B: Environmental, 2017, 203, 314-323.	20.2	18
50	Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis. Materials, 2016, 9, 550.	2.9	33
51	Hard-template preparation of Au/CeO 2 mesostructured catalysts and their activity for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Microporous and Mesoporous Materials, 2016, 226, 466-475.	4.4	54
52	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	3.1	20
53	Novel thiotolerant catalysts for the on-board partial dehydrogenation of jet fuels. RSC Advances, 2016, 6, 48962-48972.	3.6	3
54	Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts. Catalysis Science and Technology, 2016, 6, 4418-4427.	4.1	43

#	Article	IF	CITATIONS
55	Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Applied Catalysis B: Environmental, 2016, 180, 38-43.	20.2	42
56	Role of Different Solvents on the Purification of As-Synthesized Nano-Ce _{1â^2<l>x</l>} Cd <l>_x</l> O <sub Powders. Journal of Nanoscience and Nanotechnology, 2015, 15, 3636-3640.</sub 	3&g t)2 ê^'&	t;1>d 18</td
57	Pd–Cu interaction in Pd/Cu-MCM-41 catalysts: Effect of silica source and metal content. Catalysis Today, 2015, 246, 108-115.	4.4	15
58	Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal–support interaction. Applied Catalysis B: Environmental, 2015, 163, 520-530.	20.2	177
59	On the Chemistry of Ethanol on Basic Oxides: Revising Mechanisms and Intermediates in the Lebedev and Guerbet reactions. ChemSusChem, 2015, 8, 377-388.	6.8	158
60	Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd–Au nanoparticles. Applied Catalysis A: General, 2015, 504, 408-419.	4.3	90
61	Hydrogen-assisted dechlorination of CF3OCFCl–CF2Cl to CF3OCF=CF2 over different metal-supported catalysis A: General, 2014, 470, 123-131.	4.3	8
62	TiO2 based nano-photocatalysis immobilized on cellulose substrates. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 58-64.	3.9	61
63	Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: Influence of the synthesis procedure. Microporous and Mesoporous Materials, 2014, 190, 1-9.	4.4	18
64	Green and easily scalable microwave synthesis of noble metal nanosols (Au, Ag, Cu, Pd) usable as catalysts. New Journal of Chemistry, 2014, 38, 1401-1409.	2.8	36
65	Substrate and product role in the Shvo's catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Transactions, 2014, 43, 10224-10234.	3.3	60
66	Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism. Journal of Catalysis, 2014, 317, 206-219.	6.2	70
67	Catalyst deactivation in on-board H2 production by fuel dehydrogenation. International Journal of Hydrogen Energy, 2014, 39, 1336-1349.	7.1	8
68	Role of the preparation method on properties of Pd/Cu-MCM-41 hydrodechlorinating catalysts. Catalysis Today, 2014, 235, 134-143.	4.4	12
69	Role of the composition and preparation method inÂthe activity of hydrotalcite-derived Ru catalysts in the catalytic partial oxidation of methane. International Journal of Hydrogen Energy, 2013, 38, 15128-15139.	7.1	33
70	Synthesis of CeO2 nano-aggregates of complex morphology. Ceramics International, 2013, 39, 629-634.	4.8	10
71	Easily scalable synthesis of Ni nanosols suitable for the hydrogenation of 4-nitrophenol to p-aminophenol under mild condition. Chemical Engineering Journal, 2013, 215-216, 616-625.	12.7	29
72	TiO2 based photocatalytic coatings: From nanostructure to functional properties. Chemical Engineering Journal, 2013, 225, 880-886.	12.7	38

#	Article	IF	CITATIONS
73	Effects of the microwave heating on the properties of gadolinium-doped cerium oxide prepared by polyol method. Journal of the European Ceramic Society, 2013, 33, 67-77.	5.7	25
74	Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold–copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today, 2012, 195, 120-126.	4.4	124
75	Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts. Catalysts, 2012, 2, 1-23.	3.5	18
76	Au–Ag nanoparticles as red pigment in ceramic inks for digital decoration. Dyes and Pigments, 2012, 94, 355-362.	3.7	47
77	Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chemistry, 2011, 13, 2091.	9.0	242
78	On-board H2 generation by catalytic dehydrogenation of hydrocarbon mixtures or fuels. Catalysis Today, 2011, 175, 504-508.	4.4	20
79	Microwave-assisted polyol synthesis of Cu nanoparticles. Journal of Nanoparticle Research, 2011, 13, 127-138.	1.9	143
80	Microwave-assisted synthesis of gadolinia-doped ceria powders for solid oxide fuel cells. Ceramics International, 2011, 37, 1423-1426.	4.8	29
81	Design of nano-sized FeOx and Au/FeOx catalysts supported on CeO2 for total oxidation of VOC. Applied Catalysis A: General, 2011, 395, 10-18.	4.3	59
82	Pt–Sn/γ-Al2O3 and Pt–Sn–Na/γ-Al2O3 catalysts for hydrogen production by dehydrogenation of Jet A-1 fuel: Characterisation and preliminary activity tests. International Journal of Hydrogen Energy, 2011, 36, 5972-5982.	7.1	24
83	Total oxidation of volatile organic compounds on Au/FeOx catalysts supported on mesoporous SBA-15 silica. Applied Catalysis A: General, 2011, 400, 54-60.	4.3	38
84	Catalytic combustion of toluene over cluster-derived gold/iron catalysts. Applied Catalysis A: General, 2010, 372, 138-146.	4.3	52
85	Design of nano-sized FeOx and Au/FeOx catalysts for total oxidation of VOC and preferential oxidation of CO. Studies in Surface Science and Catalysis, 2010, 175, 785-788.	1.5	4
86	Gold Nanoparticle-Containing Membranes from in Situ Reduction of a Gold(III)â^'Aminoethylimidazolium Aurate Salt. Journal of Physical Chemistry C, 2010, 114, 9693-9701.	3.1	41
87	Microwave-assisted synthesis of Au, Ag and Au-Ag nanoparticles and their catalytic activities for the reduction of nitrophenol. Studies in Surface Science and Catalysis, 2010, , 621-624.	1.5	12
88	Sol–gel combustion synthesis of chromium doped yttrium aluminum perovskites. Journal of Sol-Gel Science and Technology, 2009, 50, 449-455.	2.4	30
89	Microwave-assisted synthesis of Pr–ZrSiO4, V–ZrSiO4 and Cr–YAlO3 ceramic pigments. Journal of the European Ceramic Society, 2009, 29, 2951-2957.	5.7	29
90	Solvothermal synthesis and properties control of doped ZnO nanoparticles. Journal of Colloid and Interface Science, 2009, 329, 73-80.	9.4	97

#	Article	IF	CITATIONS
91	Structural Relaxation around Cr ³⁺ in YAlO ₃ â^'YCrO ₃ Perovskites from Electron Absorption Spectra. Journal of Physical Chemistry A, 2009, 113, 13772-13778.	2.5	32
92	Sol–gel combustion synthesis of BNBT powders. Journal of Sol-Gel Science and Technology, 2008, 46, 39-45.	2.4	63
93	Direct Oxyfluorination of Hydrocarbons on Metal Fluorides. Topics in Catalysis, 2008, 50, 168-179.	2.8	5
94	Heterocoagulation-spray drying process for the inclusion of ceramic pigments. Journal of the European Ceramic Society, 2008, 28, 169-176.	5.7	10
95	The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts. Applied Catalysis A: General, 2008, 341, 18-25.	4.3	82
96	Gold/iron carbonyl clusters as precursors for TiO2 supported catalysts. Catalysis Today, 2008, 137, 483-488.	4.4	37
97	Polyfunctionality of DeNOx catalysts in other pollutant abatement. Catalysis Today, 2007, 119, 295-300.	4.4	18
98	Chlorinated organics total oxidation over V2O5/TiO2 catalysts prepared by polyol-mediated synthesis. Applied Catalysis A: General, 2007, 325, 309-315.	4.3	18
99	Aging investigation on catalysts for hydrofluorocarbons synthesis. Applied Catalysis A: General, 2007, 326, 48-54.	4.3	11
100	Nanosized Pd/Pt and Pd/Rh Catalysts for Naphthalene Hydrogenation and Hydrogenolysis/Ring-opening. Catalysis Letters, 2006, 108, 197-207.	2.6	15
101	Effect of silica on the catalytic destruction of chlorinated organics over V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 2006, 64, 1-8.	20.2	28
102	Synthesis of Nb Doped Lead Zirconate Titanate by Chemical Methods. Advanced Engineering Materials, 2006, 8, 572-576.	3.5	6
103	Preparation of transition metal fluorides as catalysts for the environmentally sustainable HFC production Studies in Surface Science and Catalysis, 2006, 162, 993-1000.	1.5	2
104	PZT prepared by spray drying: From powder synthesis to electromechanical properties. Journal of the European Ceramic Society, 2005, 25, 3323-3334.	5.7	19
105	Nb-Doped PZT Material by Sol-Gel Combustion. Journal of Sol-Gel Science and Technology, 2005, 36, 203-211.	2.4	27
106	Effect of silica additive on the thermal stability of catalysts for NOx abatement. Environmental Chemistry Letters, 2003, 1, 197-200.	16.2	6
107	ALMAX catalyst for the selective oxidation of n-butane to maleic anhydride: a highly efficient V/P/O system for fluidized-bed reactors. Studies in Surface Science and Catalysis, 2001, , 141-146.	1.5	10
108	Relationship between structural/surface characteristics and reactivity in n-butane oxidation to maleic anhydride. Catalysis Today, 2000, 61, 203-210.	4.4	42

#	Article	IF	CITATIONS
109	The effect of glycols in the organic preparation of V/P mixed oxide, catalyst for the oxidation of n-butane to maleic anhydride. Studies in Surface Science and Catalysis, 2000, , 963-973.	1.5	8
110	Mixed oxides with rutile type structure active in ammoxidation to acrylonitrile. Studies in Surface Science and Catalysis, 1999, , 79-84.	1.5	1
111	A new ternary mixed oxide catalyst for ammoxidation of propane: Sn/V/Sb. Catalysis Letters, 1998, 50, 17-23.	2.6	13
112	Propane ammoxidation to acrylonitrile over a tin-based mixed-oxide catalyst. Catalysis Today, 1998, 42, 283-295.	4.4	44
113	A new catalyst for propane ammoxidation: the Sn/V/Sb mixed oxide. Studies in Surface Science and Catalysis, 1997, 110, 403-412.	1.5	7
114	Mechanism of ammoxidation of propane on a Sb/V/O system. Catalysis Letters, 1997, 45, 119-123.	2.6	28
115	Propane ammoxidation over Sn/V/Sb mixed oxide: Preparation method and calcination effects. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1631-1639.	0.4	1
116	Key Aspects of Catalyst Design for the Selective Oxidation of Paraffins. Catalysis Reviews - Science and Engineering, 1996, 38, 413-438.	12.9	408
117	A Comparison of the Reactivity of "Nonequilibrated―and "Equilibrated―V–P–O Catalysts: Structural Evolution, Surface Characterization, and Reactivity in the Selective Oxidation ofn-Butane andn-Pentane. Journal of Catalysis, 1996, 160, 52-64.	6.2	109
118	On the antimony-stabilized cubic structure of potassium/ammonium salts of 12-molybdophosphoric acid and its catalytic performance in the oxidehydrogenation of ethane. Catalysis Letters, 1995, 30, 253-262.	2.6	37
119	Mechanism of Thermal Decomposition of Potassium/Ammonium Salts of the 12-Molybdophosphoric Acid and Effect on the Catalytic Performance in the Isobutyric Acid Oxidehydrogenation. Journal of Catalysis, 1994, 146, 491-502.	6.2	68
120	Oxydative dehydrogenation of isobutyric acid to methacrylic acid over heteropolysalts of composition Kx(NH4)3–xPM012O40: effect of catalyst pretreatment and composition on the activity	1.5	1

o composition Kx(NH4)3–xPM012O40: effect of catalyst pretreatment and composition on the activity and selectivity. Studies in Surface Science and Catalysis, 1993, 78, 471-478.