Tunga Salthammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3530706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formaldehyde in the Indoor Environment. Chemical Reviews, 2010, 110, 2536-2572.	23.0	1,312
2	Does e-cigarette consumption cause passive vaping?. Indoor Air, 2013, 23, 25-31.	2.0	354
3	Indoor aerosols: from personal exposure to risk assessment. Indoor Air, 2013, 23, 462-487.	2.0	347
4	Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry. Atmospheric Environment, 2007, 41, 3111-3128.	1.9	266
5	Plastics additives in the indoor environment—flame retardants and plasticizers. Science of the Total Environment, 2005, 339, 19-40.	3.9	264
6	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	4.8	256
7	Formaldehyde in the Ambient Atmosphere: From an Indoor Pollutant to an Outdoor Pollutant?. Angewandte Chemie - International Edition, 2013, 52, 3320-3327.	7.2	229
8	Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments. Atmospheric Environment, 2008, 42, 1449-1460.	1.9	212
9	Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 2018, 94, 705-718.	8.2	172
10	Transdermal Uptake of Diethyl Phthalate and Di(<i>n</i> -butyl) Phthalate Directly from Air: Experimental Verification. Environmental Health Perspectives, 2015, 123, 928-934.	2.8	158
11	Assessing Human Exposure to Organic Pollutants in the Indoor Environment. Angewandte Chemie - International Edition, 2018, 57, 12228-12263.	7.2	149
12	Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sensors and Actuators B: Chemical, 2013, 180, 77-89.	4.0	136
13	Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Building and Environment, 2019, 150, 219-232.	3.0	134
14	Photocatalytic Surface Reactions on Indoor Wall Paint. Environmental Science & Technology, 2007, 41, 6573-6578.	4.6	133
15	An Investigation into the Characteristics and Formation Mechanisms of Particles Originating from the Operation of Laser Printers. Environmental Science & amp; Technology, 2009, 43, 1015-1022.	4.6	128
16	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	4.8	128
17	Human exposure to ozone in school and office indoor environments. Environment International, 2018, 119, 503-514.	4.8	122
18	Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air, 2016, 26, 25-38.	2.0	114

#	Article	IF	CITATIONS
19	Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 113-118.	1.8	113
20	Characterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer. Environment International, 2019, 123, 476-485.	4.8	109
21	Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors. Science of the Total Environment, 2017, 590-591, 394-405.	3.9	103
22	Phthalic Esters in the Indoor Environment - Test Chamber Studies on PVC-Coated Wallcoverings. Indoor Air, 2001, 11, 150-155.	2.0	94
23	Ultra-fine particles release from hardcopy devices: Sources, real-room measurements and efficiency of filter accessories. Science of the Total Environment, 2008, 407, 418-427.	3.9	91
24	Human exposure to NO2 in school and office indoor environments. Environment International, 2019, 130, 104887.	4.8	86
25	Evaluation of Ultrafine Particle Emissions from Laser Printers Using Emission Test Chambers. Environmental Science & Technology, 2008, 42, 4338-4343.	4.6	84
26	Organic and inorganic pollutants in storage rooms of the Lower Saxony State Museum Hanover, Germany. Atmospheric Environment, 2005, 39, 6098-6108.	1.9	76
27	Beyond phthalates: Gas phase concentrations and modeled gas/particle distribution of modern plasticizers. Science of the Total Environment, 2011, 409, 4031-8.	3.9	76
28	The formaldehyde dilemma. International Journal of Hygiene and Environmental Health, 2015, 218, 433-436.	2.1	76
29	Flame retardants in the indoor environment - Part II: release of VOCs (triethylphosphate and) Tj ETQq1 1 0.7843	14 rgBT /C)verlock 10 Tf
30	Critical evaluation of approaches in setting indoor air quality guidelines and reference values. Chemosphere, 2011, 82, 1507-1517.	4.2	75
31	Emerging indoor pollutants. International Journal of Hygiene and Environmental Health, 2020, 224, 113423.	2.1	73
32	Chamber studies on mass-transfer of di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DnBP) from emission sources into house dust. Atmospheric Environment, 2010, 44, 2840-2845.	1.9	69
33	Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralisation. Progress in Organic Coatings, 2013, 76, 609-615.	1.9	67
34	Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sensors and Actuators B: Chemical, 2013, 189, 146-156.	4.0	63
35	Emission of Volatile Organic Compounds from Furniture Coatings. Indoor Air, 1997, 7, 189-197.	2.0	60
36	Interaction of volatile organic compounds with indoor materials—a small-scale screening method. Atmospheric Environment, 1999, 33, 2395-2401.	1.9	60

#	Article	IF	CITATIONS
37	Emission of reactive compounds and secondary products from wood-based furniture coatings. Atmospheric Environment, 1998, 33, 75-84.	1.9	58
38	Impact of building materials on indoor formaldehyde levels: Effect of ceiling tiles, mineral fiber insulation and gypsum board. Building and Environment, 2013, 64, 138-145.	3.0	58
39	Impact of operating wood-burning fireplace ovens on indoor air quality. Chemosphere, 2014, 103, 205-211.	4.2	58
40	Volatile Organic Compounds: Characteristics, distribution and sources in urban schools. Atmospheric Environment, 2015, 106, 485-491.	1.9	58
41	Occurrence, Dynamics and Reactions of Organic Pollutants in the Indoor Environment. Clean - Soil, Air, Water, 2009, 37, 417-435.	0.7	57
42	Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NO in exhaled human breath. Analytica Chimica Acta, 2010, 669, 53-62.	2.6	55
43	Indoor air quality in passive-type museum showcases. Journal of Cultural Heritage, 2011, 12, 205-213.	1.5	55
44	A microscale device for measuring emissions from materials for indoor use. Analytical and Bioanalytical Chemistry, 2007, 387, 1907-1919.	1.9	54
45	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	4.6	54
46	Triplet energy transfer sensitized fluorescence in 3,9-dibromoperylene. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 49, 97-107.	2.0	51
47	Determination of VOC and TVOC in Air Using Thermal Desorption GC-MS – Practical Implications for Test Chamber Experiments. Chromatographia, 2005, 62, 75-85.	0.7	51
48	Comparison of analytical techniques for the determination of aldehydes in test chambers. Chemosphere, 2008, 73, 1351-1356.	4.2	51
49	Dermal uptake of nicotine from air and clothing: Experimental verification. Indoor Air, 2018, 28, 247-257.	2.0	51
50	Portable cantilever-based airborne nanoparticle detector. Sensors and Actuators B: Chemical, 2013, 187, 118-127.	4.0	50
51	Effects of Climatic Parameters on Formaldehyde Concentrations in Indoor Air. Indoor Air, 1995, 5, 120-128.	2.0	47
52	Occurrence of organic and inorganic biocides in the museum environment. Atmospheric Environment, 2007, 41, 3266-3275.	1.9	47
53	Characterization of particle emission from household electrical appliances. Science of the Total Environment, 2011, 409, 2534-2540.	3.9	47
54	Characterization of the field and laboratory emission cell—FLEC: Flow field and air velocities. Atmospheric Environment, 1998, 32, 773-781.	1.9	45

#	Article	IF	CITATIONS
55	Analysis of odour compounds from scented consumer products using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Analytica Chimica Acta, 2016, 904, 98-106.	2.6	45
56	Analytical procedure for the determination of very volatile organic compounds (C3–C6) in indoor air. Analytical and Bioanalytical Chemistry, 2018, 410, 3171-3183.	1.9	45
57	Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a "green―paint. Atmospheric Environment, 2008, 42, 7632-7640.	1.9	43
58	Measurements of dermal uptake of nicotine directly from air and clothing. Indoor Air, 2017, 27, 427-433.	2.0	43
59	Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs. Atmospheric Environment, 2015, 106, 467-476.	1.9	42
60	Application of proton-transfer-reaction-mass-spectrometry for Indoor Air Quality research. Indoor Air, 2014, 24, 178-189.	2.0	41
61	Data on formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Data in Brief, 2019, 22, 400-435.	0.5	41
62	Predicting the Gas/Particle Distribution of SVOCs in the Indoor Environment Using Poly Parameter Linear Free Energy Relationships. Environmental Science & Technology, 2019, 53, 2491-2499.	4.6	39
63	Aerosols generated by hardcopy devices and other electrical appliances. Environmental Pollution, 2012, 169, 167-174.	3.7	38
64	Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. Micro and Nano Letters, 2013, 8, 554-558.	0.6	38
65	Dermal Uptake of Benzophenone-3 from Clothing. Environmental Science & Technology, 2017, 51, 11371-11379.	4.6	37
66	Human exposure to air contaminants in sports environments. Indoor Air, 2020, 30, 1109-1129.	2.0	37
67	Formation and emission of chloroanisoles as indoor pollutants. Environmental Science and Pollution Research, 2004, 11, 147-151.	2.7	36
68	Photophysical properties of 3,5-diacetyl-1,4-dihydrolutidine in solution: application to the analysis of formaldehyde. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 74, 195-201.	2.0	35
69	Formation of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF) during the combustion of impregnated wood. Chemosphere, 1995, 30, 2051-2060.	4.2	35
70	Application of near-infrared spectroscopy for the fast detection and sorting of wood–plastic composites and waste wood treated with wood preservatives. Wood Science and Technology, 2016, 50, 313-331.	1.4	34
71	Surface-catalysed reactions on pollutant-removing building products for indoor use. Chemosphere, 2009, 75, 476-482.	4.2	33
72	Future trends in ambient air pollution and climate in Germany – Implications for the indoor environment. Building and Environment, 2018, 143, 661-670.	3.0	33

#	Article	IF	CITATIONS
73	Formation of organic indoor air pollutants by UV-curing chemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 1-9.	2.0	32
74	Interferences in the determination of formaldehyde via PTR-MS: What do we learn from m/z 31?. International Journal of Mass Spectrometry, 2010, 289, 170-172.	0.7	32
75	Interaction of ozone with wooden building products, treated wood samples and exotic wood species. Atmospheric Environment, 2012, 54, 365-372.	1.9	31
76	Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors. Sensors and Actuators A: Physical, 2013, 202, 90-99.	2.0	30
77	Trace analysis of pentachlorophenol (PCP) in wood and wood-based products - comparison of sample preparation procedures. Fresenius' Journal of Analytical Chemistry, 2000, 367, 73-78.	1.5	28
78	Release and absorption of formaldehyde by textiles. Cellulose, 2017, 24, 4509-4518.	2.4	27
79	Chamber Studies on Nonvented Decorative Fireplaces Using Liquid or Gelled Ethanol Fuel. Environmental Science & Technology, 2014, 48, 3583-3590.	4.6	26
80	Portable photocatalytic air cleaners: efficiencies and by-product generation. Environmental Science and Pollution Research, 2016, 23, 7482-7493.	2.7	26
81	Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: Predictable boundary layer concentrations and emission rates. Science of the Total Environment, 2014, 494-495, 299-305.	3.9	25
82	Time-correlated single-photon counting with alternate recording of excitation and emission. Journal of Luminescence, 1989, 44, 161-165.	1.5	24
83	Release of Acetic Acid and Furfural from Cork Products. Indoor Air, 2000, 10, 133-134.	2.0	24
84	Time course of isocyanate emission from curing polyurethane adhesives. Atmospheric Environment, 2003, 37, 5467-5475.	1.9	24
85	Synthesis and characterization of polyurethane ionomers with trimellitic anhydride and dimethylol propionic acid for waterborne self-emulsifying dispersions. Journal of Polymer Science Part A, 2014, 52, 680-690.	2.5	24
86	Review of the characteristics and possible health effects of particles emitted from laser printing devices. Indoor Air, 2020, 30, 396-421.	2.0	24
87	Emissions from Construction and Decoration Materials for Museum Showcases. Studies in Conservation, 2009, 54, 218-235.	0.6	23
88	Microplastics and their Additives in the Indoor Environment. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
89	Isocyanate Emission from PUR Adhesives:Â Influence of Temperature, Monomer Content, and Curing Mechanism. Environmental Science & Technology, 2002, 36, 1827-1832.	4.6	21
90	Influence of molecular parameters on the sink effect in test chambers. Indoor Air, 2006, 16, 060207062917004.	2.0	21

Tunga Salthammer

#	Article	IF	CITATIONS
91	Fluorescence quenching of perylene by Co2+ ions via energy transfer in viscous and non-viscous media. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 55, 53-62.	2.0	20
92	Sensitive determination of airborne diisocyanates by HPLC: 4,4′-Diphenylmethane-diisocyanate (MDI). Fresenius' Journal of Analytical Chemistry, 1998, 362, 289-293.	1.5	20
93	The temperature dependence of photophysical processes in perylene, tetracene and some of their derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 51, 215-227.	2.0	19
94	Evidence for donor—donor energy transfer in lipid bilayers: perylene fluorescence quenching by CO2+ ions. Chemical Physics Letters, 1991, 186, 189-194.	1.2	19
95	Silicon Nanowire Resonators: Aerosol Nanoparticle Mass Sensing in the Workplace. IEEE Nanotechnology Magazine, 2013, 7, 18-23.	0.9	18
96	Quantum Chemical Calculation and Evaluation of Partition Coefficients for Classical and Emerging Environmentally Relevant Organic Compounds. Environmental Science & Technology, 2022, 56, 379-391.	4.6	18
97	Numerical simulation of pile-up distorted time-correlated single photon counting (TCSPC) data. Journal of Fluorescence, 1992, 2, 23-27.	1.3	17
98	Environmental Tobacco Smoke Particles. , 0, , 245-274.		17
99	Effect of surface covering on the release of formaldehyde, acetaldehyde, formic acid and acetic acid from particleboard. Building and Environment, 2020, 178, 106947.	3.0	17
100	Measurement and evaluation of gaseous and particulate emissions from burning scented and unscented candles. Environment International, 2021, 155, 106590.	4.8	16
101	Metal ion quenching of perylene fluorescence in lipid bilayers. Pure and Applied Chemistry, 1993, 65, 1687-1692.	0.9	15
102	Calculation of kinetic parameters from chamber tests using nonlinear regression. Atmospheric Environment, 1996, 30, 161-171.	1.9	15
103	Effect of particle concentration and semi-volatile organic compounds on the phenomenon of â€~black magic dust' in dwellings. Building and Environment, 2011, 46, 1880-1890.	3.0	15
104	Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 601-609.	1.8	15
105	Emission Control of Desktop 3D Printing: The Effects of a Filter Cover and an Air Purifier. Environmental Science and Technology Letters, 2019, 6, 499-503.	3.9	15
106	Estimating human indoor exposure to elemental mercury from broken compact fluorescent lamps (CFLs). Indoor Air, 2012, 22, 289-298.	2.0	14
107	Evaluating the risk of mixtures in the indoor air of primary school classrooms. Environmental Science and Pollution Research, 2015, 22, 15080-15088.	2.7	14
108	Comparison of Methods for the Determination of Formaldehyde in Air. Analytical Letters, 2016, 49, 1613-1621.	1.0	14

#	Article	IF	CITATIONS
109	Human sensory response to acetone/air mixtures. Indoor Air, 2016, 26, 796-805.	2.0	13
110	Environmental Test Chambers and Cells. , 0, , 101-115.		12
111	Emissions from wallcoverings: Test procedures and preliminary results. Toxicological and Environmental Chemistry, 1993, 40, 121-131.	0.6	11
112	Formaldehyde, aliphatic aldehydes (C ₂ ₁₁), furfural, and benzaldehyde in the residential indoor air of children and adolescents during the German Environmental Survey 2014–2017 (GerES V). Indoor Air, 2022, 32, .	2.0	11
113	Die Chemie bei Breaking Bad. Chemie in Unserer Zeit, 2013, 47, 214-221.	0.1	10
114	Erfassung der Humanexposition mit organischen Verbindungen in Innenraumumgebungen. Angewandte Chemie, 2018, 130, 12406-12443.	1.6	10
115	Human exposure to airborne particles during wood processing. Atmospheric Environment, 2018, 193, 101-108.	1.9	10
116	Determination of acrolein in ambient air and in the atmosphere of environmental test chambers. Environmental Sciences: Processes and Impacts, 2021, 23, 1729-1746.	1.7	10
117	Reduction of soluble chromate in wood ash by formaldehyde. Biomass and Bioenergy, 2002, 22, 139-143.	2.9	9
118	A resonant cantilever sensor for monitoring airborne nanoparticles. , 2011, , .		9
119	Determination of exposure to engineered carbon nanoparticles using a self-sensing piezoresistive silicon cantilever sensor. Microsystem Technologies, 2012, 18, 905-915.	1.2	9
120	Synthesis of fatty acid-based 3,6-disubstituted-1,2,3,6-tetrahydro-phthalic acid anhydride derivatives. European Journal of Lipid Science and Technology, 2013, 115, 101-110.	1.0	9
121	Application of gas chromatography - field asymmetric ion mobility spectrometry (GC-FAIMS) for the detection of organic preservatives in wood. International Journal for Ion Mobility Spectrometry, 2014, 17, 1-9.	1.4	9
122	A mechanism for the production of ultrafine particles from concrete fracture. Environmental Pollution, 2017, 222, 175-181.	3.7	9
123	Real-Time Monitoring of Indoor Organic Compounds. , 0, , 65-99.		9
124	Time and spatially resolved tracking of the air quality in local public transport. Scientific Reports, 2022, 12, 3262.	1.6	9
125	Temperature and indoor environments. Indoor Air, 2022, 32, .	2.0	9

Reference Values of Environmental Pollutants in House Dust. , 0, , 407-435.

#	Article	IF	CITATIONS
127	Luftverunreinigende organische Substanzen in InnenrÄ ¤ men. Chemie in Unserer Zeit, 1994, 28, 280-290.	0.1	7
128	Catalyzed Reactions on Mineral Plaster Materials Used for Indoor Air Purification. Clean - Soil, Air, Water, 2013, 41, 437-446.	0.7	7
129	Effect of ball milling on lignin polyesterification with $\hat{l}\mu$ -caprolactone. Holzforschung, 2015, 69, 297-302.	0.9	7
130	Distribution of five SVOCs in a model room: effect of vacuuming and air cleaning measures. Environmental Sciences: Processes and Impacts, 2019, 21, 1353-1363.	1.7	7
131	Application of Solid Sorbents for the Sampling of Volatile Organic Compounds in Indoor Air. , 0, , 1-18.		7
132	Emission from Floor Coverings. , 0, , 185-202.		6
133	Standard Test Methods for the Determination of VOCs and SVOCs in Automobile Interiors. , 0, , 105-115.		6
134	Does vaping affect indoor air quality?. Indoor Air, 2020, 30, 793-794.	2.0	6
135	Sensory evaluation in test chambers: Influences of direct and indirect assessment. Building and Environment, 2020, 172, 106668.	3.0	6
136	Release of formaldehyde and other organic compounds from nitrogen fertilizers. Chemosphere, 2021, 263, 127913.	4.2	6
137	Emission of VOCs and SVOCs from Electronic Devices and Office Equipment. , 0, , 405-430.		6
138	A holistic modeling framework for estimating the influence of climate change on indoor air quality. Indoor Air, 2022, 32, .	2.0	6
139	Quenching of perylene fluorescence by Co2+ ions in dipalmitoylphosphatidylcholine (DPPC) vesicles. Journal of Fluorescence, 1993, 3, 77-84.	1.3	5
140	A routine method for the determination of the TVOC content in wallcoverings using headspace gas-chromatography. Fresenius' Journal of Analytical Chemistry, 1996, 356, 344-347.	1.5	5
141	Application of Diffusive Samplers. , 0, , 57-71.		5
142	Chemical composition of burnt smell caused by accidental fires: Environmental contaminants. Chemosphere, 2011, 82, 237-243.	4.2	5
143	Low-weight electrostatic sampler for airborne nanoparticles. , 2011, , .		5
144	Femtogram Mass Measurement of Airborne Engineered Nanoparticles using Silicon Nanopillar Resonators. Procedia Engineering, 2012, 47, 289-292.	1.2	5

#	Article	IF	CITATIONS
145	Maleinisation of monounsaturated fatty acids by Rh-catalysis. European Journal of Lipid Science and Technology, 2014, 116, 943-951.	1.0	5
146	<title>Fluorescence energy transfer to metal ions in lipid bilayers</title> . , 1992, 1640, 707.		4
147	Absorption and fluorescence of 1-(2-pyridyl)-piperazine and four diisocyanate derivatives in solution. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 107, 159-164.	2.0	4
148	Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticle mass. , 2011, , .		4
149	Cleaning of structured templates from nanoparticle accumulation using silicone. Microsystem Technologies, 2012, 18, 835-842.	1.2	4
150	A permeation-controlled formaldehyde reference source for application in environmental test chambers. Chemosphere, 2017, 184, 900-906.	4.2	4
151	Evaluation of Indoor Air Contamination by Means of Reference and Guide Values: The German Approach. , 0, , 189-211.		4
152	A new method for the simultaneous determination of heavy metals in wallcoverings. Fresenius' Journal of Analytical Chemistry, 1996, 354, 27-31.	1.5	3
153	Heavy Air Pollution in Beijing and Possible Impact on Olympic Athletes. Clean - Soil, Air, Water, 2008, 36, 731-733.	0.7	3
154	A comment on 'Theegarten et al.: Submesothelial deposition of carbon nanoparticles after toner exposition: Case report. Diagnostic Pathology 2010, 5:77'. Diagnostic Pathology, 2011, 6, 20.	0.9	3
155	Release of Organic Compounds and Particulate Matter from Products, Materials, and Electrical Devices in the Indoor Environment. Handbook of Environmental Chemistry, 2014, , 1-35.	0.2	3
156	Vorkommen polychlorierter Biphenyle (PCB) in Altholz. European Journal of Wood and Wood Products, 2003, 61, 23-28.	1.3	2
157	The Phenomenon of"Black Magic Dust―in Housing Units. , 0, , 340-355.		2
158	Enhanced airborne nanoparticles mass sensing using a high-mode resonant silicon cantilever sensor. , 2011, , .		2
159	Real-Time Monitoring of Organic Compounds. , 0, , 73-83.		1
160	Mathematical Modeling of Test Chamber Kinetics. , 0, , 153-168.		1
161	The Field and Laboratory Emission Cell— FLEC. , 0, , 143-152.		1
162	Effect of Photoresist Coating on the Reusable Resonant Cantilever Sensors for Assessing Exposure to Airborne Nanoparticles. Procedia Engineering, 2012, 47, 302-305.	1.2	1

Tunga Salthammer

#	Article	IF	CITATIONS
163	Quality or quantity? Historic and current trends in scientific publishing. Indoor Air, 2016, 26, 347-349.	2.0	1
164	Sensory Perception of Nonâ€Deuterated and Deuterated Organic Compounds. Chemistry - A European Journal, 2021, 27, 1046-1056.	1.7	1
165	Emissions from Wood Burning Stoves and Ethanol Fireplaces into the Indoor Environment. ISEE Conference Abstracts, 2013, 2013, 3737.	0.0	1
166	Degree of flexibility needed. Physics World, 1991, 4, 22-22.	0.0	0
167	Heavy metal content of wooden furniture coatings. Toxicological and Environmental Chemistry, 1996, 53, 25-31.	0.6	Ο
168	Editorial: Clean Soil Air Water 6/2009. Clean - Soil, Air, Water, 2009, 37, 409-410.	0.7	0
169	Nanoparticles From Hardcopy Devices—Estimation of Exposure From Chamber and Real Room Measurements. Epidemiology, 2011, 22, S116-S117.	1.2	Ο
170	Cleaning of nanopillar templates for nanoparticle collection using PDMS. , 2011, , .		0
171	Evaluation of Formaldehyde Guideline Values for Indoor Air. Epidemiology, 2011, 22, S39.	1.2	Ο
172	Silicon nanowire resonators for aerosol nanoparticle mass sensing. , 2013, , .		0
173	ISIAQ Academy Awards 2016. Indoor Air, 2017, 27, 705-707.	2.0	0
174	They came from beyond science. Indoor Air, 2019, 29, 159-160.	2.0	0
175	Microplastics and their Additives in the Indoor Environment. Angewandte Chemie, 0, , .	1.6	0