
Frank C Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3530586/publications.pdf Version: 2024-02-01

FDANK C WAISH

#	Article	IF	CITATIONS
1	Redox flow cells for energy conversion. Journal of Power Sources, 2006, 160, 716-732.	4.0	991
2	Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Advances, 2012, 2, 10125.	1.7	778
3	Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surface and Coatings Technology, 2006, 201, 371-383.	2.2	726
4	The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14, 3370.	6.7	673
5	Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. International Journal of Energy Research, 2012, 36, 1105-1120.	2.2	577
6	Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry, 2019, 3, 442-458.	13.8	544
7	Recent developments in organic redox flow batteries: A critical review. Journal of Power Sources, 2017, 360, 243-283.	4.0	396
8	Reticulated vitreous carbon as an electrode material. Journal of Electroanalytical Chemistry, 2004, 561, 203-217.	1.9	294
9	Electrochemical approaches to the production of graphene flakes and their potential applications. Carbon, 2013, 54, 1-21.	5.4	285
10	Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosensors and Bioelectronics, 2011, 26, 3087-3102.	5.3	234
11	Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. Journal of Energy Storage, 2017, 11, 119-153.	3.9	229
12	Three-dimensional graphene oxide/polypyrrole composite electrodes fabricated by one-step electrodeposition for high performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 14445-14457.	5.2	212
13	Elongated Titanate Nanostructures and Their Applications. European Journal of Inorganic Chemistry, 2009, 2009, 977-997.	1.0	203
14	Characterization of a zincâ \in 'cerium flow battery. Journal of Power Sources, 2011, 196, 5174-5185.	4.0	201
15	A Review of the Iron–Air Secondary Battery for Energy Storage. ChemPlusChem, 2015, 80, 323-335.	1.3	178
16	Graphite felt as a versatile electrode material: Properties, reaction environment, performance and applications. Electrochimica Acta, 2017, 258, 1115-1139.	2.6	171
17	A review of the manufacture, mechanical properties and potential applications of auxetic foams. Physica Status Solidi (B): Basic Research, 2013, 250, 1963-1982.	0.7	166
18	Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry A, 2014, 2, 4919.	5.2	161

#	Article	IF	CITATIONS
19	A review of electrodeposited Ni-Co alloy and composite coatings: Microstructure, properties and applications. Surface and Coatings Technology, 2019, 372, 463-498.	2.2	161
20	Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 2019, 11, 4653-4682.	2.8	161
21	Stability of Aqueous Suspensions of Titanate Nanotubes. Chemistry of Materials, 2006, 18, 1124-1129.	3.2	160
22	Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Topics in Catalysis, 2006, 39, 151-160.	1.3	131
23	Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochimica Acta, 2011, 56, 6536-6546.	2.6	125
24	The electrodeposition of composite coatings: Diversity, applications and challenges. Current Opinion in Electrochemistry, 2020, 20, 8-19.	2.5	125
25	Electrochemical Corrosion Behaviour of 90–10 Cu–Ni Alloy in Chloride-Based Electrolytes. Journal of Applied Electrochemistry, 2004, 34, 659-669.	1.5	123
26	Redox flow batteries for energy storage: their promise, achievements and challenges. Current Opinion in Electrochemistry, 2019, 16, 117-126.	2.5	117
27	Electrodeposition of Ni P alloy coatings: A review. Surface and Coatings Technology, 2019, 369, 198-220.	2.2	116
28	The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery. Journal of Chemical Technology and Biotechnology, 2013, 88, 126-138.	1.6	103
29	Self-lubricating Ni-P-MoS2 composite coatings. Surface and Coatings Technology, 2016, 307, 926-934.	2.2	96
30	An undivided zinc–cerium redox flow battery operating at room temperature (295 K). Electrochemistry Communications, 2011, 13, 770-773.	2.3	95
31	Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors. Journal of Power Sources, 2015, 293, 657-674.	4.0	93
32	3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics. Electrochemistry Communications, 2017, 77, 133-137.	2.3	93
33	The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta, 2011, 56, 5158-5165.	2.6	87
34	Developments in the soluble lead-acid flow battery. Journal of Applied Electrochemistry, 2010, 40, 955-965.	1.5	86
35	Studies of three-dimensional electrodes in the FMO1-LC laboratory electrolyser. Journal of Applied Electrochemistry, 1994, 24, 95.	1.5	85
36	Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid. Surface and Coatings Technology, 2014, 259, 676-697.	2.2	85

#	Article	IF	CITATIONS
37	Kinetics of Alkali Metal Ion Exchange into Nanotubular and Nanofibrous Titanates. Journal of Physical Chemistry C, 2007, 111, 14644-14651.	1.5	84
38	Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery. Electrochimica Acta, 2011, 56, 2145-2153.	2.6	82
39	Mass transport in the rectangular channel of a filter-press electrolyzer (the FM01-LC reactor). AICHE Journal, 2005, 51, 682-687.	1.8	79
40	The Rotating Cylinder Electrode (RCE) and its Application to the Electrodeposition of Metals. Australian Journal of Chemistry, 2005, 58, 246.	0.5	79
41	The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications. Electrochimica Acta, 2016, 215, 566-591.	2.6	78
42	A review of developments in the electrodeposition of tin. Surface and Coatings Technology, 2016, 288, 79-94.	2.2	78
43	The characteristics and performance of hybrid redox flow batteries with zinc negative electrodes for energy storage. Renewable and Sustainable Energy Reviews, 2018, 90, 992-1016.	8.2	77
44	Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. Coatings, 2021, 11, 110.	1.2	74
45	3D Hierarchically Structured CoS Nanosheets: Li ⁺ Storage Mechanism and Application of the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 3709-3718.	4.0	72
46	The Development of Zn–Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges. ChemPlusChem, 2015, 80, 288-311.	1.3	69
47	Metastable Nature of Titanate Nanotubes in an Alkaline Environment. Crystal Growth and Design, 2010, 10, 4421-4427.	1.4	65
48	An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties. Electrochimica Acta, 2017, 245, 872-882.	2.6	65
49	A review of developments in the electrodeposition of tin-copper alloys. Surface and Coatings Technology, 2016, 304, 246-262.	2.2	64
50	Review—The Design, Performance and Continuing Development of Electrochemical Reactors for Clean Electrosynthesis. Journal of the Electrochemical Society, 2020, 167, 155525.	1.3	62
51	Mass transport and active area of porous Pt/Ti electrodes for the Zn-Ce redox flow battery determined from limiting current measurements. Electrochimica Acta, 2016, 221, 154-166.	2.6	56
52	Developments in soluble lead flow batteries and remaining challenges: An illustrated review. Journal of Energy Storage, 2018, 15, 69-90.	3.9	56
53	The stability of an acidic tin methanesulfonate electrolyte in the presence of a hydroquinone antioxidant. Electrochimica Acta, 2008, 53, 5280-5286.	2.6	53
54	Electrodeposition of Ni P composite coatings: A review. Surface and Coatings Technology, 2019, 378, 124803.	2.2	52

4

#	Article	IF	CITATIONS
55	Electrochemical redox processes involving soluble cerium species. Electrochimica Acta, 2016, 205, 226-247.	2.6	51
56	Morphological control of synthetic Ni ₃ Si ₂ O ₅ (OH) ₄ nanotubes in an alkaline hydrothermal environment. Journal of Materials Chemistry A, 2013, 1, 548-556.	5.2	50
57	Three-dimensional porous metal electrodes: Fabrication, characterisation and use. Current Opinion in Electrochemistry, 2019, 16, 1-9.	2.5	50
58	The role of a tribofilm and wear debris in the tribological behaviour of nanocrystalline Ni–Co electrodeposits. Wear, 2013, 306, 296-303.	1.5	48
59	Characterization of the reaction environment in a filter-press redox flow reactor. Electrochimica Acta, 2007, 52, 5815-5823.	2.6	47
60	A nonaqueous organic redox flow battery using multi-electron quinone molecules. Journal of Power Sources, 2021, 500, 229942.	4.0	42
61	The influence of operational parameters on the performance of an undivided zinc–cerium flow battery. Electrochimica Acta, 2012, 80, 7-14.	2.6	41
62	The electrodeposition and characterisation of low-friction and wear-resistant Co-Ni-P coatings. Surface and Coatings Technology, 2013, 235, 495-505.	2.2	40
63	Effective particle dispersion via high-shear mixing of the electrolyte for electroplating a nickel-molybdenum disulphide composite. Electrochimica Acta, 2018, 283, 568-577.	2.6	39
64	The influence of a perfluorinated cationic surfactant on the electrodeposition of tin from a methanesulfonic acid bath. Journal of Electroanalytical Chemistry, 2008, 615, 91-102.	1.9	38
65	Towards improved electroplating of metal-particle composite coatings. Transactions of the Institute of Metal Finishing, 2020, 98, 288-299.	0.6	38
66	Developments in electrode design: structure, decoration and applications of electrodes for electrodes for electrochemical technology. Journal of Chemical Technology and Biotechnology, 2018, 93, 3073-3090.	1.6	37
67	Pressure drop through platinized titanium porous electrodes for ceriumâ€based redox flow batteries. AICHE Journal, 2018, 64, 1135-1146.	1.8	36
68	Mass transfer to a nanostructured nickel electrodeposit of high surface area in a rectangular flow channel. Electrochimica Acta, 2013, 90, 507-513.	2.6	35
69	The Preparation of Auxetic Foams by Threeâ€≺scp>Dimensional Printing and Their Characteristics. Advanced Engineering Materials, 2013, 15, 980-985.	1.6	35
70	Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications. Applied Surface Science Advances, 2021, 6, 100141.	2.9	33
71	Developments in plane parallel flow channel cells. Current Opinion in Electrochemistry, 2019, 16, 10-18.	2.5	32
72	The use of electrolyte redox potential to monitor the Ce(IV)/Ce(III) couple. Journal of Environmental Management, 2008, 88, 1417-1425.	3.8	31

#	Article	IF	CITATIONS
73	Mass transport to reticulated vitreous carbon rotating cylinder electrodes. Journal of Applied Electrochemistry, 1995, 25, 450.	1.5	30
74	Electrodeposited Co-P alloy and composite coatings: A review of progress towards replacement of conventional hard chromium deposits. Surface and Coatings Technology, 2021, 422, 127564.	2.2	30
75	Editors' Choice—Electrodeposition of Platinum on Titanium Felt in a Rectangular Channel Flow Cell. Journal of the Electrochemical Society, 2017, 164, D57-D66.	1.3	28
76	Quaternary aryl phosphonium salts as corrosion inhibitors for iron in HCl. Journal of Alloys and Compounds, 2018, 765, 812-825.	2.8	28
77	Removal of methylene blue from aqueous solutions using an Fe2+ catalyst and in-situ H2O2 generated at gas diffusion cathodes. Electrochimica Acta, 2019, 308, 45-53.	2.6	28
78	Improvements in direct borohydride fuel cells using three-dimensional electrodes. Catalysis Today, 2011, 170, 148-154.	2.2	27
79	Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra® textiles. Progress in Organic Coatings, 2013, 76, 1296-1301.	1.9	24
80	Electrolytic removal of cupric ions from dilute liquors using reticulated vitreous carbon cathodes. Journal of Chemical Technology and Biotechnology, 1992, 55, 147-155.	1.6	23
81	Carbon Materials as Positive Electrodes in Bromineâ€Based Flow Batteries. ChemPlusChem, 2022, 87, e202100441.	1.3	23
82	Titanate nanotubes and nanosheets as a mechanical reinforcement of water-soluble polyamic acid: Experimental and theoretical studies. Composites Part B: Engineering, 2017, 124, 54-63.	5.9	21
83	Inhibition of Polyimide Photodegradation by Incorporation of Titanate Nanotubes into a Composite. Journal of Polymers and the Environment, 2019, 27, 1505-1515.	2.4	21
84	The Importance of Substrate Surface Condition in Controlling the Porosity of Electroless Nickel Deposits. Transactions of the Institute of Metal Finishing, 1998, 76, 149-155.	0.6	20
85	Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes. Journal of Chemical Technology and Biotechnology, 2004, 79, 935-945.	1.6	18
86	Cyclic Voltammetry at Metal Electrodes. Transactions of the Institute of Metal Finishing, 1995, 73, 72-78.	0.6	17
87	Mass-Transfer Measurements at Porous 3D Pt-Ir/Ti Electrodes in a Direct Borohydride Fuel Cell. Journal of the Electrochemical Society, 2018, 165, F198-F206.	1.3	17
88	Mathematical modelling of an enzymatic fuel cell with an air-breathing cathode. Electrochimica Acta, 2013, 112, 386-393.	2.6	16
89	Characterisation of platinum electrodeposits on a titanium micromesh stack in a rectangular channel flow cell. Electrochimica Acta, 2017, 247, 994-1005.	2.6	16
90	X-ray computed micro-tomography of reticulated vitreous carbon. Carbon, 2018, 135, 85-94.	5.4	16

#	Article	IF	CITATIONS
91	Electrochemical Measurements of Electroless Nickel Coatings on Zincated Aluminium Substrates. Transactions of the Institute of Metal Finishing, 2000, 78, 157-162.	0.6	15
92	The application of reticulated vitreous carbon rotating cylinder electrodes to the removal of cadmium and copper ions from solution. Journal of Chemical Technology and Biotechnology, 2004, 79, 946-953.	1.6	15
93	Impedance spectroscopy studies of the dissolution of ferrous- and zinc-based materials in aqueous timber preservatives. Journal of Applied Electrochemistry, 2008, 38, 1599-1607.	1.5	15
94	The electrochemical reduction of Cr(VI) ions in acid solution at titanium and graphite electrodes. Journal of Environmental Chemical Engineering, 2016, 4, 3610-3617.	3.3	15
95	Singleâ€Walled Carbon Nanotube/Trititanate Nanotube Composite Fibers. Advanced Engineering Materials, 2009, 11, B55.	1.6	13
96	Electrospinning of <i>in situ</i> and <i>ex situ</i> synthesized polyimide composites reinforced by titanate nanotubes. Journal of Applied Polymer Science, 2017, 134, .	1.3	13
97	Mass transport control of oxygen reduction at graphite felt with subsequent decolourisation of RB-5 dye in a parallel plate flow reactor. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 123-129.	2.7	13
98	Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate. Journal of Solid State Electrochemistry, 2019, 23, 1237-1248.	1.2	12
99	Enhanced mass transport to a reticulated vitreous carbon rotating cylinder electrode using jet flow. Electrochimica Acta, 2006, 51, 2728-2736.	2.6	11
100	Photocatalytic degradation of methylene blue dye on reticulated vitreous carbon decorated with electrophoretically deposited TiO2 nanotubes. Diamond and Related Materials, 2020, 109, 108001.	1.8	11
101	Research and Development Techniques 1: Potentiodynamic Studies of Copper Metal Deposition. Transactions of the Institute of Metal Finishing, 2003, 81, B95-B100.	0.6	10
102	Insertion of nanostructured titanates into the pores of an anodised TiO2 nanotube array by mechanically stimulated electrophoretic deposition. Journal of Materials Chemistry C, 2017, 5, 3955-3961.	2.7	10
103	Electroanalysis in 2Dâ€īiO ₂ Nanosheet Hosts: Electrolyte and Selectivity Effects in Ferroceneboronic Acid – Saccharide Binding. Electroanalysis, 2018, 30, 1303-1310.	1.5	10
104	Experimental and computation assessment of thermomechanical effects during auxetic foam fabrication. Scientific Reports, 2020, 10, 18301.	1.6	10
105	Silver Removal from an X-Ray Fixer Solution by means of a Potentiostatically-Controlled Rotating Cylinder Electrode. Journal of Photographic Science, 1994, 42, 182-192.	0.1	9
106	Synthesis and Properties of Electrodeposited Ni–Co/WS2 Nanocomposite Coatings. Coatings, 2019, 9, 148.	1.2	9
107	Composite, multilayer and three-dimensional substrate supported tin-based electrodeposits from methanesulphonic acid. Transactions of the Institute of Metal Finishing, 2016, 94, 152-158.	0.6	8
108	Current distribution in a rectangular flow channel manufactured by 3â€Ð printing. AICHE Journal, 2017, 63, 1144-1151.	1.8	8

#	Article	IF	CITATIONS
109	Review—Carbon Cloth as a Versatile Electrode: Manufacture, Properties, Reaction Environment, and Applications. Journal of the Electrochemical Society, 2022, 169, 053503.	1.3	8
110	Editors' Choice—Critical Review—The Bipolar Trickle Tower Reactor: Concept, Development and Applications. Journal of the Electrochemical Society, 2021, 168, 023503.	1.3	7
111	Enhancement of antibacterial efficiency at silver electrodeposited on coconut shell activated carbon by modulating pulse frequency. Journal of Solid State Electrochemistry, 2018, 22, 749-759.	1.2	6
112	Design, imaging and performance of 3D printed openâ€cell architectures for porous electrodes: quantification of surface area and permeability. Journal of Chemical Technology and Biotechnology, 2021, 96, 1818-1831.	1.6	6
113	The effect of operational parameters on the performance of a bipolar trickle tower reactor. Journal of Chemical Technology and Biotechnology, 2004, 79, 954-960.	1.6	5
114	Electrochemical removal of metal ions from aqueous solution: a student workshop. Journal of Environmental Monitoring, 2005, 7, 943.	2.1	5
115	Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIMâ€1). Electroanalysis, 2020, 32, 2756-2763.	1.5	5
116	Classic Evans's Drop Corrosion Experiment Investigated in Terms of a Tertiary Current and Potential Distribution. Corrosion and Materials Degradation, 2022, 3, 270-280.	1.0	5
117	Selection of oxygen reduction catalysts for secondary tri-electrode zinc–air batteries. Scientific Reports, 2022, 12, 6696.	1.6	4
118	Electrolytic Conductivity and its Measurement. Transactions of the Institute of Metal Finishing, 1992, 70, 45-49.	0.6	3
119	Synchrotron X-Ray Studies of Potentiostatically Formed Phosphate Layers on Steel. Transactions of the Institute of Metal Finishing, 1994, 72, 63-65.	0.6	3
120	Consultancy in the Classroom: Using Industrial Chemistry in a Teaching Exercise. Journal of Chemical Education, 1997, 74, 1426.	1.1	3
121	Extraction of hydrophobic analytes from organic solution into a titanate 2D-nanosheet host: Electroanalytical perspectives. Analytica Chimica Acta: X, 2019, 1, 100001.	2.8	3
122	Redox Flow Batteries for Energy Storage. , 2022, , 394-406.		3
123	pH Measurements. Transactions of the Institute of Metal Finishing, 1992, 70, 148-151.	0.6	2
124	The Comparative Performance of Batteries: The Lead-Acid and the Aluminum-Air Cells. Journal of Chemical Education, 1996, 73, 811.	1.1	2
125	Voltammetric characterisation of diferrocenylborinic acid in organic solution and in aqueous media when immobilised into a titanate nanosheet film. Dalton Transactions, 2019, 48, 11200-11207.	1.6	2
126	Patterning of wormâ€like soft polydimethylsiloxane structures using a TiO 2 nanotubular array. Journal of Applied Polymer Science, 2020, 137, 49795.	1.3	2

#	Article	IF	CITATIONS
127	Frontispiece: The Development of Zn-Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	1
128	The Analysis of Metal Ions in Solution. Transactions of the Institute of Metal Finishing, 1993, 71, 166-170.	0.6	0
129	Spontaneous scrolling of Al <inf>2</inf> Si <inf>2</inf> O <inf>5</inf> (OH) <inf>4</inf> nanosheets into halloysite nanotubes stimulated by structural doping with GeO <inf>2</inf> ., 2012, , .		0
130	Frontispiece: A Review of the Iron-Air Secondary Battery for Energy Storage. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	0
131	Zen and electrochemical surface finishing of materials. Transactions of the Institute of Metal Finishing, 2021, 99, 55-60.	0.6	0