Daisuke Saeki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3530539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme. Journal of Membrane Science, 2013, 428, 403-409.	4.1	109
2	Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling. Journal of Membrane Science, 2018, 550, 332-339.	4.1	87
3	Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support. Journal of Membrane Science, 2015, 487, 51-59.	4.1	85
4	Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surface-initiated atom transfer radical polymerization. Desalination, 2014, 350, 21-27.	4.0	75
5	Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation. Journal of Membrane Science, 2013, 447, 128-133.	4.1	52
6	Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab on A Chip, 2010, 10, 357-362.	3.1	49
7	Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors. Applied Surface Science, 2015, 330, 351-357.	3.1	49
8	Preparation of positively charged PVDF membranes with improved antibacterial activity by blending modification: Effect of change in membrane surface material properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 133-139.	2.3	46
9	Antifouling thin-film composite membranes with multi-defense properties by controllably constructing amphiphilic diblock copolymer brush layer. Journal of Membrane Science, 2020, 614, 118515.	4.1	42
10	Effect of operating conditions on biofouling in reverse osmosis membrane processes: Bacterial adhesion, biofilm formation, and permeate flux decrease. Desalination, 2016, 378, 74-79.	4.0	38
11	Dual Superlyophobic Aliphatic Polyketone Membranes for Highly Efficient Emulsified Oil–Water Separation: Performance and Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 30860-30870.	4.0	38
12	Prevention of bacterial adhesion on polyamide reverse osmosis membranes via electrostatic interactions using a cationic phosphorylcholine polymer coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 171-176.	2.3	36
13	Effect of hydrophobicity of polymer materials used for water purification membranes on biofilm formation dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 622-628.	2.3	35
14	Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio. Journal of Membrane Science, 2020, 595, 117529.	4.1	32
15	Effect of polymer structure modified on RO membrane surfaces via surface-initiated ATRP on dynamic biofouling behavior. Journal of Membrane Science, 2019, 582, 111-119.	4.1	28
16	Highly improved organic solvent reverse osmosis (OSRO) membrane for organic liquid mixture separation by simple heat treatment. Journal of Membrane Science, 2021, 618, 118710.	4.1	27
17	Permeation of Dispersed Particles through a Pore and Transmembrane Pressure Behavior in Dead-End Constant-Flux Microfiltration by Two-Dimensional Direct Numerical Simulation. Industrial & Engineering Chemistry Research, 2013, 52, 4650-4659.	1.8	25
18	Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS Applied Materials & Interfaces, 2018, 10, 27477-27487.	4.0	24

DAISUKE SAEKI

#	Article	IF	CITATIONS
19	Reverse osmosis membranes based on a supported lipid bilayer with gramicidin A water channels. Desalination, 2015, 375, 48-53.	4.0	22
20	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie - International Edition, 2021, 60, 3654-3660.	7.2	22
21	A novel strategy to immobilize enzymes on microporous membranes via dicarboxylic acid halides. RSC Advances, 2017, 7, 48199-48207.	1.7	21
22	Effect of hydrophilic polymer modification of reverse osmosis membrane surfaces on organic adsorption and biofouling behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125680.	2.3	19
23	Highly Productive Droplet Formation by Anisotropic Elongation of a Thread Flow in a Microchannel. Langmuir, 2008, 24, 13809-13813.	1.6	18
24	Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab on A Chip, 2010, 10, 2292.	3.1	17
25	Water transport and ion rejection investigation for application of cyclic peptide nanotubes to forward osmosis process: A simulation study. Desalination, 2017, 424, 85-94.	4.0	16
26	Effects of operating conditions on biofouling in crossflow ultrafiltration membrane processes. Separation and Purification Technology, 2017, 189, 138-144.	3.9	16
27	Ultrathin and ordered stacking of silica nanoparticles via spin-assisted layer-by-layer assembly under dehydrated conditions for the fabrication of ultrafiltration membranes. Journal of Membrane Science, 2017, 523, 60-67.	4.1	16
28	Development of ultrafiltration membrane by stacking of silver nanoparticles stabilized with oppositely charged polyelectrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 451, 33-37.	2.3	14
29	Niobate nanosheet membranes with enhanced stability for nanofiltration. Chemical Communications, 2017, 53, 7929-7932.	2.2	14
30	Preparation of cyclic peptide nanotube structures and molecular simulation of water adsorption and diffusion. Journal of Membrane Science, 2017, 537, 101-110.	4.1	11
31	Polyketone-based membrane support improves the organic solvent resistance of laccase catalysis. Journal of Colloid and Interface Science, 2019, 544, 230-240.	5.0	11
32	Enzyme-aided forward osmosis (E-FO) process to enhance removal of micropollutants from water resources. Journal of Membrane Science, 2020, 593, 117399.	4.1	11
33	Preparation of Amphotericin B-Ergosterol structures and molecular simulation of water adsorption and diffusion. Journal of Membrane Science, 2018, 545, 229-239.	4.1	10
34	Dynamic interaction between oppositely charged vesicles: Aggregation, lipid mixing, and disaggregation. Journal of Colloid and Interface Science, 2008, 320, 611-614.	5.0	9
35	Microcompartmentalized cell-free protein synthesis in semipermeable microcapsules composed of polyethylenimine-coated alginate. Journal of Bioscience and Bioengineering, 2014, 118, 199-204.	1.1	8
36	Preparation of carboxylated silver nanoparticles via a reverse micelle method and covalent stacking onto porous substrates via amide bond formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 98-102.	2.3	6

DAISUKE SAEKI

#	Article	IF	CITATIONS
37	Molecular simulation of a modified amphotericin B-Ergosterol artificial water channel to evaluate structure and water molecule transport performance. Journal of Membrane Science, 2019, 583, 49-58.	4.1	6
38	Concentration and characterization of organic colloids in deep granitic groundwater using nanofiltration membranes for evaluating radionuclide transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 485, 55-62.	2.3	5
39	Formation of supported lipid bilayers on porous polymeric substrates induced by hydrophobic interaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 297-303.	2.3	5
40	Phase separation behavior of binary mixture of photopolymerizable diacetylene and unsaturated phospholipids in liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183377.	1.4	4
41	Effect of polyelectrolyte structure on formation of supported lipid bilayers on polyelectrolyte multilayers prepared using the layer-by-layer method. Journal of Colloid and Interface Science, 2020, 569, 211-218.	5.0	3
42	ã€Rapid communications〠Applying Amphotericin B–Ergosterol in Forward Osmosis : a simulation study. Membrane, 2017, 42, 250-254.	0.0	2
43	Preparation of calcium alginate microbeads from water-in-oil-in-water emulsions using microfluidic device. Journal of Bioscience and Bioengineering, 2009, 108, S162.	1.1	1
44	Efficient condensation of organic colloids in deep groundwater using surface-modified nanofiltration membranes under optimized hydrodynamic conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 68-78.	2.3	1
45	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie, 2021, 133, 3698-3704.	1.6	0
46	Immobilization of Lipid Bilayers onto Polymeric Solid Surface and Its Application. Membrane, 2021, 46, 187-191.	0.0	0
47	Development of Biomimetic Reverse Osmosis Membranes using Biomolecules as Permeation Pores.	0.0	0