Sabiniano Roman Regueros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3529738/publications.pdf Version: 2024-02-01

		126907	106344
118	4,923	33	65
papers	citations	h-index	g-index
121	121	121	7216
121	121	121	7210
all docs	docs citations	times ranked	citing authors
121 all docs	121 docs citations	121 times ranked	7216 citing authors

#	Article	IF	CITATIONS
1	Progress and opportunities for tissue-engineered skin. Nature, 2007, 445, 874-880.	27.8	935
2	The Tissue-Engineered Vascular Graft—Past, Present, and Future. Tissue Engineering - Part B: Reviews, 2016, 22, 68-100.	4.8	576
3	Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 2017, 129, 188-198.	11.4	317
4	Consensus Statement of the European Urology Association and the European Urogynaecological Association on the Use of Implanted Materials for Treating Pelvic Organ Prolapse and Stress Urinary Incontinence. European Urology, 2017, 72, 424-431.	1.9	165
5	Human Mesenchymal Stromal Cells from Different Sources Diverge in Their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns. Stem Cells International, 2016, 2016, 1-9.	2.5	134
6	Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomaterialia, 2015, 18, 40-49.	8.3	94
7	Production and performance of biomaterials containing RGD peptides. Soft Matter, 2008, 4, 2331.	2.7	90
8	A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. Journal of the American Chemical Society, 2020, 142, 4639-4647.	13.7	84
9	Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Materials Science and Engineering C, 2019, 103, 109764.	7.3	80
10	A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials, 2019, 12, 2643.	2.9	64
11	Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair. BJU International, 2013, 112, 674-685.	2.5	61
12	Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source?. Neurourology and Urodynamics, 2014, 33, 531-537.	1.5	61
13	Using <i>ex Ovo</i> Chick Chorioallantoic Membrane (CAM) Assay To Evaluate the Biocompatibility and Angiogenic Response to Biomaterials. ACS Biomaterials Science and Engineering, 2019, 5, 3190-3200.	5.2	60
14	Biodegradable and conductive chitosan–graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics. RSC Advances, 2015, 5, 51934-51946.	3.6	58
15	A dinuclear ruthenium(<scp>ii</scp>) phototherapeutic that targets duplex and quadruplex DNA. Chemical Science, 2019, 10, 3502-3513.	7.4	54
16	Complications related to use of mesh implants in surgical treatment of stress urinary incontinence and pelvic organ prolapse: infection or inflammation?. World Journal of Urology, 2020, 38, 73-80.	2.2	51
17	Biomaterials for Pelvic Floor Reconstructive Surgery: How Can We Do Better?. BioMed Research International, 2015, 2015, 1-20.	1.9	50
18	Characterisation of structural changes in collagen with Raman spectroscopy. Applied Spectroscopy Reviews, 2019, 54, 509-542.	6.7	49

#	Article	IF	CITATIONS
19	Production of chitosan PVA PCL hydrogels to bind heparin and induce angiogenesis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 466-476.	3.4	48
20	Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourology and Urodynamics, 2012, 31, 13-21.	1.5	46
21	An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering. Journal of Anatomy, 2015, 227, 302-314.	1.5	45
22	Decellularised baby spinach leaves and their potential use in tissue engineering applications: Studying and promoting neovascularisation. Journal of Biomaterials Applications, 2019, 34, 546-559.	2.4	43
23	Oestradiol-releasing Biodegradable Mesh Stimulates Collagen Production and Angiogenesis: An Approach to Improving Biomaterial Integration in Pelvic Floor Repair. European Urology Focus, 2019, 5, 280-289.	3.1	43
24	Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Translational Research, 2015, 165, 464-479.	5.0	42
25	Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomaterialia, 2016, 29, 188-197.	8.3	42
26	Production of Tissue-Engineered Skin and Oral Mucosa for Clinical and Experimental Use. Methods in Molecular Biology, 2011, 695, 129-153.	0.9	39
27	Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nature Reviews Urology, 2019, 16, 675-689.	3.8	39
28	Demonstration of improved tissue integration and angiogenesis with an elastic, estradiol releasing polyurethane material designed for use in pelvic floor repair. Neurourology and Urodynamics, 2018, 37, 716-725.	1.5	38
29	Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine. Biomaterials Science, 2013, 1, 942.	5.4	37
30	Assessment of Electrospun and Ultra-lightweight Polypropylene Meshes in the Sheep Model for Vaginal Surgery. European Urology Focus, 2020, 6, 190-198.	3.1	37
31	Stem Cell-Based Tissue-Engineered Laryngeal Replacement. Stem Cells Translational Medicine, 2017, 6, 677-687.	3.3	36
32	Thermoresponsive, stretchable, biodegradable and biocompatible poly(glycerol sebacate)-based polyurethane hydrogels. Polymer Chemistry, 2015, 6, 7974-7987.	3.9	35
33	Oxygen Mapping of Melanoma Spheroids using Small Molecule Platinum Probe and Phosphorescence Lifetime Imaging Microscopy. Scientific Reports, 2017, 7, 10743.	3.3	34
34	Porous microspheres support mesenchymal progenitor cell ingrowth and stimulate angiogenesis. APL Bioengineering, 2018, 2, 026103.	6.2	34
35	Temperature-dependent phagocytosis of highly branched poly(N-isopropyl acrylamide-co-1,2) Tj ETQq1 1 0.7843 4022.	6.7 6.7	Overlock 10 T 33
36	Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the InÂVivo Response to Meshes Implanted in Rabbits. Journal of Urology, 2016, 196, 261-269.	0.4	33

#	Article	IF	CITATIONS
37	Multifunctional Copper-Containing Mesoporous Glass Nanoparticles as Antibacterial and Proangiogenic Agents for Chronic Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 246.	4.1	33
38	Dental materials for cleft palate repair. Materials Science and Engineering C, 2016, 61, 1018-1028.	7.3	31
39	Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models <i>in Vitro</i> . ACS Biomaterials Science and Engineering, 2020, 6, 3513-3528.	5.2	31
40	Monitoring Fibrous Scaffold Guidance of Three-Dimensional Collagen Organisation Using Minimally-Invasive Second Harmonic Generation. PLoS ONE, 2014, 9, e89761.	2.5	30
41	Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. Burns, 2014, 40, 957-965.	1.9	30
42	A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models. Journal of Tissue Engineering, 2018, 9, 204173141879985.	5.5	29
43	Sub-micron poly(N-isopropylacrylamide) particles as temperature responsive vehicles for the detachment and delivery of human cells. Soft Matter, 2009, 5, 4928.	2.7	28
44	Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing. Materials Science and Engineering C, 2017, 74, 347-356.	7.3	28
45	Exploration of 2-deoxy-D-ribose and 17β-Estradiol as alternatives to exogenous VEGF to promote angiogenesis in tissue-engineered constructs. Regenerative Medicine, 2019, 14, 179-197.	1.7	28
46	Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Frontiers in Bioengineering and Biotechnology, 2019, 7, 451.	4.1	28
47	Bioengineered airway epithelial grafts with mucociliary function based on collagen IV- and laminin-containing extracellular matrix scaffolds. European Respiratory Journal, 2020, 55, 1901200.	6.7	28
48	A Cell Therapy for Chronic Wounds Based Upon a Plasma Polymer Delivery Surface. Plasma Processes and Polymers, 2006, 3, 419-430.	3.0	27
49	Acute <i>In Vivo</i> Response to an Alternative Implant for Urogynecology. BioMed Research International, 2014, 2014, 1-10.	1.9	27
50	Bioresorbable antibacterial PCLâ€PLAâ€nHA composite membranes for oral and maxillofacial defects. Polymer Composites, 2019, 40, 1564-1575.	4.6	27
51	Overcoming scarring in the urethra: Challenges for tissue engineering. Asian Journal of Urology, 2018, 5, 69-77.	1.2	26
52	Peptides from Tetraspanin CD9 Are Potent Inhibitors of Staphylococcus Aureus Adherence to Keratinocytes. PLoS ONE, 2016, 11, e0160387.	2.5	26
53	Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence. Journal of Biomaterials Applications, 2016, 30, 1578-1588.	2.4	25
54	Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering. Biomacromolecules, 2022, 23, 720-730.	5.4	25

#	Article	IF	CITATIONS
55	Simple surface coating of electrospun poly-L-lactic acid scaffolds to induce angiogenesis. Journal of Biomaterials Applications, 2015, 30, 50-60.	2.4	23
56	Controlled peel testing of a model tissue for diseased aorta. Journal of Biomechanics, 2016, 49, 3667-3675.	2.1	23
57	Recent advances in pelvic floor repair. F1000Research, 2019, 8, 778.	1.6	23
58	Cellular and Hormonal Regulation of Pigmentation in Human Ocular Melanocytes. Pigment Cell & Melanoma Research, 2001, 14, 298-309.	3.6	22
59	Application of Tissue Engineering to Pelvic Organ Prolapse and Stress Urinary Incontinence. LUTS: Lower Urinary Tract Symptoms, 2015, 7, 63-70.	1.3	22
60	Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomaterials Science, 2021, 9, 7297-7310.	5.4	22
61	Rocking Media Over Ex Vivo Corneas Improves This Model and Allows the Study of the Effect of Proinflammatory Cytokines on Wound Healing. Investigative Ophthalmology and Visual Science, 2015, 56, 1553-1561.	3.3	21
62	Triethyl orthoformate covalently cross-linked chitosan-(poly vinyl) alcohol based biodegradable scaffolds with heparin-binding ability for promoting neovascularisation. Journal of Biomaterials Applications, 2016, 31, 582-593.	2.4	21
63	A simple rockerâ€induced mechanical stimulus upregulates mineralization by human osteoprogenitor cells in fibrous scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 370-381.	2.7	21
64	Gadolinium Contrast Agent Associated Stimulation of Human Fibroblast Collagen Production. Investigative Radiology, 2011, 46, 711-717.	6.2	20
65	Translocation of flexible polymersomes across pores at the nanoscale. Biomaterials Science, 2014, 2, 680-692.	5.4	20
66	Addition of 2-deoxy- <scp>d</scp> -ribose to clinically used alginate dressings stimulates angiogenesis and accelerates wound healing in diabetic rats. Journal of Biomaterials Applications, 2019, 34, 463-475.	2.4	20
67	Regenerative medicine and injection therapies in stress urinary incontinence. Nature Reviews Urology, 2020, 17, 151-161.	3.8	20
68	Pre-Seeding of Simple Electrospun Scaffolds with a Combination of Endothelial Cells and Fibroblasts Strongly Promotes Angiogenesis. Tissue Engineering and Regenerative Medicine, 2020, 17, 445-458.	3.7	20
69	2-deoxy-d-ribose (2dDR) upregulates vascular endothelial growth factor (VEGF) and stimulates angiogenesis. Microvascular Research, 2020, 131, 104035.	2.5	19
70	An Improved In Vivo Methodology to Visualise Tumour Induced Changes in Vasculature Using the Chick Chorionic Allantoic Membrane Assay. In Vivo, 2018, 32, 461-472.	1.3	18
71	Characterization of Ocular Clinical Isolates of Pseudomonas aeruginosa from Non-Contact Lens Related Keratitis Patients from South India. Microorganisms, 2020, 8, 260.	3.6	18
72	Hydrophobicity-Modulated Small Antibacterial Molecule Eradicates Biofilm with Potent Efficacy against Skin Infections. ACS Infectious Diseases, 2020, 6, 703-714.	3.8	18

#	Article	IF	CITATIONS
73	Economic, clinical and social impact of simple limbal epithelial transplantation for limbal stem cell deficiency. British Journal of Ophthalmology, 2022, 106, 923-928.	3.9	17
74	Arginine functionalization of hydrogels for heparin binding—a supramolecular approach to developing a proâ€angiogenic biomaterial. Biotechnology and Bioengineering, 2013, 110, 296-317.	3.3	16
75	Combination of Microstereolithography and Electrospinning to Produce Membranes Equipped with Niches for Corneal Regeneration. Journal of Visualized Experiments, 2014, , 51826.	0.3	16
76	Developing Repair Materials for Stress Urinary Incontinence to Withstand Dynamic Distension. PLoS ONE, 2016, 11, e0149971.	2.5	16
77	Creating a model of diseased artery damage and failure from healthy porcine aorta. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 378-393.	3.1	16
78	Synthetic biodegradable alternatives to the use of the amniotic membrane for corneal regeneration: assessment of local and systemic toxicity in rabbits. British Journal of Ophthalmology, 2019, 103, 286-292.	3.9	16
79	Second Harmonic Generation microscopy reveals collagen fibres are more organised in the cervix of postmenopausal women. Reproductive Biology and Endocrinology, 2016, 14, 70.	3.3	14
80	Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomaterials Science and Engineering, 2021, 7, 2803-2813.	5.2	14
81	Antimicrobial Graft Copolymer Gels. Biomacromolecules, 2016, 17, 2710-2718.	5.4	13
82	Amine functional hydrogels as selective substrates for corneal epithelialization. Acta Biomaterialia, 2014, 10, 3029-3037.	8.3	12
83	Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse. Neurourology and Urodynamics, 2019, 38, 107-115.	1.5	12
84	Use of a Tissue Engineered Human Skin Model to Investigate the Effects of Wounding and of an Anti-Inflammatory on Melanoma Cell Invasion. PLoS ONE, 2016, 11, e0156931.	2.5	11
85	Raman spectroscopy detects melanoma and the tissue surrounding melanoma using tissue-engineered melanoma models. Applied Spectroscopy Reviews, 2016, 51, 263-277.	6.7	11
86	Highly-branched poly(N-isopropyl acrylamide) functionalised with pendant Nile red and chain end vancomycin for the detection of Gram-positive bacteria. Acta Biomaterialia, 2019, 87, 197-206.	8.3	11
87	The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering, 2021, 8, 50.	3.5	11
88	Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction. Canadian Urological Association Journal, 2018, 12, E234-42.	0.6	10
89	Developing affordable and accessible proâ€angiogenic wound dressings; incorporation of 2 deoxy Dâ€ribose (2dDR) into cotton fibres and waxâ€coated cotton fibres. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 973-988.	2.7	10
90	Sprouting Angiogenesis: A Numerical Approach with Experimental Validation. Annals of Biomedical Engineering, 2021, 49, 871-884.	2.5	10

#	Article	IF	CITATIONS
91	Delivery of Bioactive Compounds to Improve Skin Cell Responses on Microfabricated Electrospun Microenvironments. Bioengineering, 2021, 8, 105.	3.5	10
92	A novel characterisation approach to reveal the mechano–chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. RSC Advances, 2021, 11, 34710-34723.	3.6	10
93	The effect of ascorbic acid and fluid flow stimulation on the mechanical properties of a tissue engineered pelvic floor repair material. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 867-875.	1.8	8
94	Designing new synthetic materials for use in the pelvic floor. Current Opinion in Urology, 2019, 29, 407-413.	1.8	8
95	Modulation of the Early Host Response to Electrospun Polylactic Acid Matrices by Mesenchymal Stem Cells from the Amniotic Fluid. European Journal of Pediatric Surgery, 2018, 28, 285-292.	1.3	7
96	Improving the biocompatibility of biomaterial constructs and constructs delivering cells for the pelvic floor. Current Opinion in Urology, 2019, 29, 419-425.	1.8	7
97	Establishing a Porcine Ex Vivo Cornea Model for Studying Drug Treatments against Bacterial Keratitis. Journal of Visualized Experiments, 2020, , .	0.3	7
98	Proof-of-concept study of electrospun PLGA membrane in the treatment of limbal stem cell deficiency. BMJ Open Ophthalmology, 2021, 6, e000762.	1.6	6
99	Ceric Ammonium Nitrate Initiated Grafting of PEG to Plasma Polymers for Cellâ€Resistant Surfaces. Plasma Processes and Polymers, 2008, 5, 192-201.	3.0	5
100	Repairing the female pelvic floor: when good enough is not good enough. Nature Reviews Urology, 2018, 15, 197-198.	3.8	5
101	An estradiol releasing, proangiogenic hydrogel as a candidate material for use in soft tissue interposition. Neurourology and Urodynamics, 2019, 38, 1195-1202.	1.5	5
102	The use of implanted materials for treating women with pelvic organ prolapse and stress urinary incontinence. Current Opinion in Urology, 2019, 29, 431-436.	1.8	5
103	Simulation of the process of angiogenesis: Quantification and assessment of vascular patterning in the chicken chorioallantoic membrane. Computers in Biology and Medicine, 2021, 136, 104647.	7.0	5
104	Developing Wound Dressings Using 2-deoxy-D-Ribose to Induce Angiogenesis as a Backdoor Route for Stimulating the Production of Vascular Endothelial Growth Factor. International Journal of Molecular Sciences, 2021, 22, 11437.	4.1	5
105	A physiologically relevant, estradiolâ€17β [E2]â€responsive in vitro tissueâ€engineered model of the vaginal epithelium for vaginal tissue research. Neurourology and Urodynamics, 2022, 41, 905-917.	1.5	5
106	Synthetic Materials Used in the Surgical Treatment of Pelvic Organ Prolapse: Problems of Currently Used Material and Designing the Ideal Material. , 2018, , .		4
107	Production, Characterization and Potential Uses of a 3D Tissue-engineered Human Esophageal Mucosal Model. Journal of Visualized Experiments, 2015, , e52693.	0.3	3
108	Identification of a fibrin concentration that promotes skin cell outgrowth from skin explants onto a synthetic dermal substitute. JPRAS Open, 2020, 25, 8-17.	0.9	3

#	Article	IF	CITATIONS
109	Branched amphotericin functional poly(<i>N</i> - <i>iso</i> propyl acrylamide): an antifungal polymer. Royal Society Open Science, 2021, 8, 201655.	2.4	3
110	Semicontinuous Emulsion Polymerization of Butyl Methacrylate and 1, 3-Butadiene in the Presence of Cyclodextrins and Cytocompatibility of Dicarboxylic Acid Telechelic Oligo(butyl Methacrylate)s Derived from Ozonolysis of the Latexes. Macromolecular Chemistry and Physics, 2011, 212, 2043-2051.	2.2	2
111	MESH SOCIAL NETWORKING: A PATIENTâ€ÐRIVEN PROCESS. BJU International, 2012, 109, E45-6; author reply E46.	2.5	2
112	Developing a synthetic composite membrane for cleft palate repair. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1178-1189.	2.7	2
113	Tissue engineering for the pelvic floor. Current Opinion in Urology, 2019, 29, 426-430.	1.8	2
114	Cutting corners, or simplifying technology to reach more patients; using the body as its own incubator for epithelial regeneration. Indian Journal of Ophthalmology, 2019, 67, 1261.	1.1	2
115	Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay. International Journal of Pharmaceutics, 2019, 561, 236-243.	5.2	1
116	Editorial. Current Opinion in Urology, 2019, 29, 378-379.	1.8	0
117	Tissue Engineered Skin Comes of Age?. , 2008, , 593-618.		0
118	Assessing the immunosuppressive activity of alginate-encapsulated mesenchymal stromal cells on splenocytes. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 168-176.	2.8	0