Ioannis Spanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352955/publications.pdf Version: 2024-02-01

IOANNIS SDANOS

#	Article	IF	CITATIONS
1	Electrocatalysis Beyond 2020: How to Tune the Preexponential Frequency Factor. ChemElectroChem, 2022, 9, .	3.4	5
2	3D Printing of Functional Metal and Dielectric Composite Metaâ€Atoms. Small, 2022, 18, e2105368.	10.0	7
3	Electrochemical evaluation of the de-/re-activation of oxygen evolving Ir oxide. Physical Chemistry Chemical Physics, 2022, 24, 14579-14591.	2.8	4
4	Role of Nanoscale Inhomogeneities in Co ₂ FeO ₄ Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2022, 144, 12007-12019.	13.7	52
5	Perspective on experimental evaluation of adsorption energies at solid/liquid interfaces. Journal of Solid State Electrochemistry, 2021, 25, 33-42.	2.5	4
6	How to minimise destabilising effect of gas bubbles on water splitting electrocatalysts?. Current Opinion in Electrochemistry, 2021, 30, 100797.	4.8	24
7	Expanding the frontiers of hydrogen evolution electrocatalysis–searching for the origins of electrocatalytic activity in the anomalies of the conventional model. Electrochimica Acta, 2021, 388, 138583.	5.2	8
8	Activity and Stability of Oxides During Oxygen Evolution Reactionâ€ â€â€F rom Mechanistic Controversies Toward Relevant Electrocatalytic Descriptors. Frontiers in Energy Research, 2021, 8, .	2.3	45
9	The Effect of Iron Impurities on Transition Metal Catalysts for the Oxygen Evolution Reaction in Alkaline Environment: Activity Mediators or Active Sites?. Catalysis Letters, 2021, 151, 1843-1856.	2.6	46
10	Dynamic carbon surface chemistry: Revealing the role of carbon in electrolytic water oxidation. Journal of Energy Chemistry, 2020, 47, 155-159.	12.9	16
11	Effect of Base on the Facile Hydrothermal Preparation of Highly Active IrO _{<i>x</i>} Oxygen Evolution Catalysts. ACS Applied Energy Materials, 2020, 3, 800-809.	5.1	25
12	Preparation of Solid Solution and Layered IrO <i>_x</i> –Ni(OH) ₂ Oxygen Evolution Catalysts: Toward Optimizing Iridium Efficiency for OER. ACS Catalysis, 2020, 10, 14640-14648.	11.2	40
13	Al ₂ Pt for Oxygen Evolution in Water Splitting: A Strategy for Creating Multifunctionality in Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 16770-16776.	13.8	15
14	Al 2 Pt für die Sauerstoffentwicklungsreaktion bei der Wasserspaltung: eine Strategie zur Erzeugung von Multifunktionalitäin der Elektrokatalyse. Angewandte Chemie, 2020, 132, 16913.	2.0	0
15	Facile Protocol for Alkaline Electrolyte Purification and Its Influence on a Ni–Co Oxide Catalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 8165-8170.	11.2	59
16	Atomically dispersed vanadium oxides on multiwalled carbon nanotubes via atomic layer deposition: A multiparameter optimization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	3
17	Poly(ionic liquid) binders as ionic conductors and polymer electrolyte interfaces for enhanced electrochemical performance of water splitting electrodes. Sustainable Energy and Fuels, 2018, 2, 1446-1451.	4.9	15
18	2D Metal Organic Frameworkâ€Graphitic Carbon Nanocomposites as Precursors for Highâ€Performance O ₂ â€Evolution Electrocatalysts. Advanced Energy Materials, 2018, 8, 1802404.	19.5	43

IOANNIS SPANOS

#	Article	IF	CITATIONS
19	Standardized Benchmarking of Water Splitting Catalysts in a Combined Electrochemical Flow Cell/Inductively Coupled Plasma–Optical Emission Spectrometry (ICP-OES) Setup. ACS Catalysis, 2017, 7, 3768-3778.	11.2	73
20	MAXNET Energy – Focusing Research in Chemical Energy Conversion on the Electrocatlytic Oxygen Evolution. Green, 2015, 5, .	0.4	3
21	Structural disordering of de-alloyed Pt bimetallic nanocatalysts: the effect on oxygen reduction reaction activity and stability. Physical Chemistry Chemical Physics, 2015, 17, 28044-28053.	2.8	14
22	From single crystal model catalysts to systematic studies of supported nanoparticles. Surface Science, 2015, 631, 278-284.	1.9	23
23	Investigating the activity enhancement on PtxCo1â^'x alloys induced by a combined strain and ligand effect. Journal of Power Sources, 2014, 245, 908-914.	7.8	27
24	PtxCo1â^'x alloy NPs prepared by colloidal tool-box synthesis: The effect of de-alloying on the oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2014, 39, 9143-9148.	7.1	7
25	Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts – The influence of the platinum to carbon ratio on the degradation rate. Journal of Power Sources, 2014, 261, 14-22.	7.8	163
26	On the influence of the Pt to carbon ratio on the degradation of high surface area carbon supported PEM fuel cell electrocatalysts. Electrochemistry Communications, 2013, 34, 153-156.	4.7	57
27	Highly Selective Electro-Oxidation of Glycerol to Dihydroxyacetone on Platinum in the Presence of Bismuth. ACS Catalysis, 2012, 2, 759-764.	11.2	259