
## **Guillaume Monier**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3529497/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Further insights into the photodegradation of poly(3-hexylthiophene) by means of X-ray photoelectron spectroscopy. Thin Solid Films, 2010, 518, 7113-7118.                                                                         | 1.8 | 89        |
| 2  | Record Pure Zincblende Phase in GaAs Nanowires down to 5 nm in Radius. Nano Letters, 2014, 14, 3938-3944.                                                                                                                          | 9.1 | 82        |
| 3  | Ultralong and Defect-Free GaN Nanowires Grown by the HVPE Process. Nano Letters, 2014, 14, 559-562.                                                                                                                                | 9.1 | 58        |
| 4  | Fast Growth Synthesis of GaAs Nanowires with Exceptional Length. Nano Letters, 2010, 10, 1836-1841.                                                                                                                                | 9.1 | 50        |
| 5  | Synthesis and Study of Stable and Size-Controlled ZnO–SiO <sub>2</sub> Quantum Dots: Application as a Humidity Sensor. Journal of Physical Chemistry C, 2016, 120, 11652-11662.                                                    | 3.1 | 47        |
| 6  | Catalyst-assisted hydride vapor phase epitaxy of GaN nanowires: exceptional length and constant<br>rod-like shape capability. Nanotechnology, 2012, 23, 405601.                                                                    | 2.6 | 30        |
| 7  | Si Doping of Vapor–Liquid–Solid GaAs Nanowires: n-Type or p-Type?. Nano Letters, 2019, 19, 4498-4504.                                                                                                                              | 9.1 | 26        |
| 8  | Passivation of GaAs(001) surface by the growth of high quality c-GaN ultra-thin film using low power glow discharge nitrogen plasma source. Surface Science, 2012, 606, 1093-1099.                                                 | 1.9 | 25        |
| 9  | Effects of the GaN layers and the annealing on the electrical properties in the Schottky diodes based on nitrated GaAs. Superlattices and Microstructures, 2015, 83, 827-833.                                                      | 3.1 | 19        |
| 10 | Tailoring the structural and optical properties of bismuth oxide films deposited by reactive<br>magnetron sputtering for photocatalytic application. Materials Chemistry and Physics, 2020, 243,<br>122580.                        | 4.0 | 19        |
| 11 | Superhydrophobicity of polymer films via fluorine atoms covalent attachment and surface nano-texturing. Journal of Fluorine Chemistry, 2017, 200, 123-132.                                                                         | 1.7 | 18        |
| 12 | Composition and optical properties tunability of hydrogenated silicon carbonitride thin films deposited by reactive magnetron sputtering. Applied Surface Science, 2018, 444, 293-302.                                             | 6.1 | 18        |
| 13 | Combined angle-resolved X-ray photoelectron spectroscopy, density functional theory and kinetic study of nitridation of gallium arsenide. Applied Surface Science, 2018, 427, 662-669.                                             | 6.1 | 18        |
| 14 | Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode.<br>EPJ Applied Physics, 2015, 72, 10102.                                                                                      | 0.7 | 17        |
| 15 | Dynamics of Gold Droplet Formation on SiO <sub>2</sub> /Si(111) Surface. Journal of Physical Chemistry C, 2020, 124, 11946-11951.                                                                                                  | 3.1 | 17        |
| 16 | Influence of Silicon on the Nucleation Rate of GaAs Nanowires on Silicon Substrates. Journal of Physical Chemistry C, 2018, 122, 19230-19235.                                                                                      | 3.1 | 15        |
| 17 | Insights into the Structure and the Electrochemical Reactivity of Cobalt-Manganese Layered Double<br>Hydroxides: Application to H <sub>2</sub> O <sub>2</sub> Sensing. Journal of Physical Chemistry C,<br>2020, 124, 15585-15599. | 3.1 | 15        |
| 18 | XPS study of the formation of ultrathin GaN film on GaAs(100). Applied Surface Science, 2008, 254, 4150-4153.                                                                                                                      | 6.1 | 14        |

Guillaume Monier

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A study of the 42CrMo4 steel surface by quantitative XPS electron spectroscopy. Applied Surface<br>Science, 2008, 254, 4738-4743.                                                                                    | 6.1 | 14        |
| 20 | Effect of surface roughness on EPES and AREPES measurements: Flat and crenels silicon surfaces.<br>Surface Science, 2008, 602, 2114-2120.                                                                            | 1.9 | 13        |
| 21 | New method for the determination of the correction function of a hemisperical electron analyser<br>based on elastic electron images. Journal of Electron Spectroscopy and Related Phenomena, 2014, 197,<br>80-87.    | 1.7 | 13        |
| 22 | Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices. Thin Solid Films, 2011, 520, 971-977.                                                          | 1.8 | 12        |
| 23 | Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Nanotechnology, 2017, 28,<br>125602.                                                                                                        | 2.6 | 12        |
| 24 | SEM and XPS studies of nanohole arrays on InP(100) surfaces created by coupling AAO templates and low energy Ar+ ion sputtering. Surface Science, 2009, 603, 2923-2927.                                              | 1.9 | 11        |
| 25 | Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs<br>nanowires: Ab initio simulations supporting center nucleation. Journal of Chemical Physics, 2014, 140,<br>194706. | 3.0 | 11        |
| 26 | MDF treatment with a Dielectric Barrier Discharge (DBD) torch. International Journal of Adhesion and Adhesives, 2017, 79, 18-22.                                                                                     | 2.9 | 11        |
| 27 | Comparative study of ionic bombardment and heat treatment on the electrical behavior of Au/GaN/n-GaAs Schottky diodes. Superlattices and Microstructures, 2019, 135, 106276.                                         | 3.1 | 11        |
| 28 | XPS, EPMA and microstructural analysis of a defective industrial plasma-nitrided steel. Surface and Coatings Technology, 2008, 202, 5887-5894.                                                                       | 4.8 | 9         |
| 29 | Study of GaN layer crystallization on GaAs(100) using electron cyclotron resonance or glow<br>discharge N2 plasma sources for the nitriding process. Applied Surface Science, 2019, 495, 143586.                     | 6.1 | 9         |
| 30 | An investigation of adhesion mechanisms between plasma-treated PMMA support and aluminum thin films deposited by PVD. Applied Surface Science, 2021, 564, 150322.                                                    | 6.1 | 9         |
| 31 | Optical and structural analysis of ultra-long GaAs nanowires after nitrogen-plasma passivation. Nano<br>Express, 2020, 1, 020019.                                                                                    | 2.4 | 8         |
| 32 | XPS combined with MM-EPES technique for in situ study of ultra thin film deposition: Application to an Au/SiO2/Si structure. Applied Surface Science, 2015, 357, 1268-1273.                                          | 6.1 | 7         |
| 33 | Study of the surface state density and potential in MIS diode Schottky using the surface photovoltage method. Molecular Crystals and Liquid Crystals, 2016, 627, 66-73.                                              | 0.9 | 7         |
| 34 | The dc Electrical Characterization of Hg/δ-GaN/n-GaAs Devices, with Different Thicknesses of the GaN<br>Thin Layers. Sensor Letters, 2011, 9, 2211-2214.                                                             | 0.4 | 7         |
| 35 | Monte Carlo simulation for Multi-Mode Elastic Peak Electron Spectroscopy of crystalline materials:<br>Effects of surface structure and excitation. Surface Science, 2010, 604, 217-226.                              | 1.9 | 6         |
| 36 | Comparison of InP Schottky diodes based on Au or Pd sensing electrodes for NO2 and O3 sensing.<br>Solid-State Electronics, 2012, 72, 29-37.                                                                          | 1.4 | 6         |

Guillaume Monier

| #  | Article                                                                                                                                                                                         | IF                | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 37 | A new model of thermionic emission mechanism for non-ideal Schottky contacts and a method of extracting electrical parameters. European Physical Journal Plus, 2020, 135, 1.                    | 2.6               | 6         |
| 38 | Advances in tailoring the water content in porous carbon aerogels using RT-pulsed fluorination.<br>Journal of Fluorine Chemistry, 2020, 238, 109633.                                            | 1.7               | 6         |
| 39 | On the use of a O2:SF6 plasma treatment on GaAs processed surfaces for molecular beam epitaxial regrowth. Applied Surface Science, 2009, 255, 3897-3901.                                        | 6.1               | 5         |
| 40 | Carbon diffusion and reactivity in Mn <sub>5</sub> Ge <sub>3</sub> thin films. Physica Status Solidi C:<br>Current Topics in Solid State Physics, 2012, 9, 1374-1377.                           | 0.8               | 5         |
| 41 | Spontaneous formation of GaN/AlN core–shell nanowires on sapphire by hydride vapor phase epitaxy.<br>Journal of Crystal Growth, 2016, 454, 1-5.                                                 | 1.5               | 5         |
| 42 | Atomic layer deposition of \$\$ext {HfO}_2\$\$ HfO2 for integration into three-dimensional<br>metal–insulator–metal devices. Applied Physics A: Materials Science and Processing, 2017, 123, 1. | 2.3               | 5         |
| 43 | Simulation and Experimental Studies of Illumination Effects on the Current Transport of Nitridated<br>GaAs Schottky Diode. Semiconductors, 2018, 52, 1998-2006.                                 | 0.5               | 5         |
| 44 | Effect of metallic contacts diffusion on Au/GaAs and Au/GaN/GaAs SBDs electrical quality during their fabrication process. Journal of Alloys and Compounds, 2021, 876, 159596.                  | 5.5               | 5         |
| 45 | Investigation of N2 plasma GaAs surface passivation efficiency against air exposure: Towards an enhanced diode. Applied Surface Science, 2022, 579, 152191.                                     | 6.1               | 5         |
| 46 | Combined EELS, LEED and SR-XPS study of ultra-thin crystalline layers of indium nitride on<br>InP(100)—Effect of annealing at 450°C. Applied Surface Science, 2007, 253, 4445-4449.             | 6.1               | 4         |
| 47 | Energy dependence of the energy loss function parametrization of indium in the Drude–Lindhard<br>model. Surface and Interface Analysis, 2014, 46, 283-288.                                      | 1.8               | 4         |
| 48 | Thiol-functionalization of Mn 5 Ge 3 thin films. Applied Surface Science, 2018, 451, 191-197.                                                                                                   | 6.1               | 4         |
| 49 | The effect of nitridation on the optical properties of InAs quantum dots grown on GaAs substrate by<br>MBE. Vacuum, 2020, 172, 109097.                                                          | 3.5               | 4         |
| 50 | Study of the Characteristics Current–Voltage and Capacity–Voltage of Hg/GaN/GaAs Structures.<br>Sensor Letters, 2011, 9, 2268-2271.                                                             | 0.4               | 4         |
| 51 | XPS study of the O2/SF6 microwave plasma oxidation of (001) GaAs surfaces. Applied Surface Science, 2009, 256, 56-60.                                                                           | 6.1               | 3         |
| 52 | Real Time Infra-Red Absorption Analysis of Nitridation of GaAs(001) by Hydrazine Solutions. Journal of the Electrochemical Society, 2013, 160, H229-H236.                                       | 2.9               | 3         |
| 53 | Development of Monte-Carlo simulations for nano-patterning surfaces associated with MM-EPES analysis. Surface Science, 2013, 618, 72-77.                                                        | 1.9               | 3         |
| 54 | DFT and experimental FTIR investigations of early stages of (0 0 1) and (1 1 1)B GaAs surface nitridation<br>Applied Surface Science, 2019, 465, 787-794.                                       | <sup>n.</sup> 6.1 | 3         |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Charge and spin transport over record distances in GaAs metallic <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt; <mml:mi>n</mml:mi> -type<br/>nanowires. Physical Review B, 2021, 103, .</mml:math<br> | 3.2 | 3         |
| 56 | Study of porous III–V semiconductors by electron spectroscopies (AES and XPS) and optical spectroscopy (PL): Effect of ionic bombardment and nitridation process. Surface Science, 2007, 601, 4531-4535.               | 1.9 | 2         |
| 57 | Conduction Mechanisms in Au/0.8 nm–GaN/n–GaAs Schottky Contacts in a Wide Temperature Range.<br>Materials, 2021, 14, 5909.                                                                                             | 2.9 | 2         |
| 58 | Interaction of hydrogen with InN thin films elaborated on InP(100). Surface Science, 2007, 601, 3722-3725.                                                                                                             | 1.9 | 1         |
| 59 | Self-catalyzed growth of GaAs nanowires on silicon by HVPE. , 2016, , .                                                                                                                                                |     | 1         |
| 60 | Electrical Characterization and Electronic Transport Modelization in the InN/InP Structures. Sensor Letters, 2009, 7, 712-715.                                                                                         | 0.4 | 1         |
| 61 | A new approach to studying the electrical behavior and the inhomogeneities of the Schottky barrier height. European Physical Journal Plus, 2022, 137, .                                                                | 2.6 | 1         |
| 62 | Anomalous ambipolar transport in depleted GaAs nanowires. Physical Review B, 2022, 105, .                                                                                                                              | 3.2 | 1         |
| 63 | First stages of surface steel nitriding: X-ray photoelectron spectroscopy and electrical measurements. Applied Surface Science, 2009, 255, 9206-9210.                                                                  | 6.1 | 0         |
| 64 | Hydride VPE: the unexpected process for the fast growth of GaAs and GaN nanowires with record aspect ratio and polytypism-free crystalline structure. , 2013, , .                                                      |     | 0         |
| 65 | Multi-Mode Elastic Peak Electron Microscopy (MM-EPEM): A new imaging technique with an ultimate in-depth resolution for surface analysis. Ultramicroscopy, 2018, 188, 13-18.                                           | 1.9 | 0         |