
Marcio Fernando Ribeiro de Resende JÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528873/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chemical genetic roadmap to improved tomato flavor. Science, 2017, 355, 391-394.	12.6	561
2	Accuracy of Genomic Selection Methods in a Standard Data Set of Loblolly Pine (<i>Pinus taeda</i> L.). Genetics, 2012, 190, 1503-1510.	2.9	363
3	Genomic selection for growth and wood quality in <i>Eucalyptus:</i> capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist, 2012, 194, 116-128.	7.3	301
4	Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist, 2012, 193, 617-624.	7.3	231
5	AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example. Plant Genome, 2016, 9, plantgenome2016.01.0009.	2.8	158
6	Unraveling Additive from Nonadditive Effects Using Genomic Relationship Matrices. Genetics, 2014, 198, 1759-1768.	2.9	156
7	Genomeâ€wide association study reveals putative regulators of bioenergy traits in <i>Populus deltoides</i> . New Phytologist, 2017, 213, 799-811.	7.3	89
8	Genomic Relationship Matrix for Correcting Pedigree Errors in Breeding Populations: Impact on Genetic Parameters and Genomic Selection Accuracy. Crop Science, 2014, 54, 1115-1123.	1.8	77
9	Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics, 2017, 18, 524.	2.8	76
10	The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity, 2016, 117, 33-41.	2.6	72
11	Ultraconserved Elements Sequencing as a Low-Cost Source of Complete Mitochondrial Genomes and Microsatellite Markers in Non-Model Amniotes. PLoS ONE, 2015, 10, e0138446.	2.5	66
12	Metabolomic selection for enhanced fruit flavor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	66
13	Insights Into the Genetic Basis of Blueberry Fruit-Related Traits Using Diploid and Polyploid Models in a GWAS Context. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	60
14	Genomic Prediction of Autotetraploids; Influence of Relationship Matrices, Allele Dosage, and Continuous Genotyping Calls in Phenotype Prediction. G3: Genes, Genomes, Genetics, 2019, 9, 1189-1198.	1.8	60
15	Association genetics of oleoresin flow in loblolly pine: discovering genes and predicting phenotype for improved resistance to bark beetles and bioenergy potential. New Phytologist, 2013, 199, 89-100.	7.3	58
16	Population genomics of the eastern cottonwood (<i>Populus deltoides</i>). Ecology and Evolution, 2017, 7, 9426-9440.	1.9	55
17	Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Horticulture Research, 2021, 8, 66.	6.3	55
18	Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome Multiomic Profiles. Genetics, 2016, 203, 1425-1438.	2.9	49

#	Article	IF	CITATIONS
19	Discovering candidate genes that regulate resin canal number in <i><scp>P</scp>inus taeda</i> stems by integrating genetic analysis across environments, ages, and populations. New Phytologist, 2015, 205, 627-641.	7.3	45
20	Natural Allelic Variations in Highly Polyploidy Saccharum Complex. Frontiers in Plant Science, 2016, 7, 804.	3.6	40
21	Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications, 2021, 12, 1227.	12.8	37
22	Genomics-based diversity analysis of Vanilla species using a Vanilla planifolia draft genome and Genotyping-By-Sequencing. Scientific Reports, 2019, 9, 3416.	3.3	36
23	Método alternativo para análise de agrupamento. Pesquisa Agropecuaria Brasileira, 2007, 42, 1421-1428.	0.9	35
24	A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS ONE, 2019, 14, e0222640.	2.5	30
25	Breeding Alfalfa (Medicago sativa L.) Adapted to Subtropical Agroecosystems. Agronomy, 2020, 10, 742.	3.0	30
26	Genomic Prediction of Additive and Non-additive Effects Using Genetic Markers and Pedigrees. G3: Genes, Genomes, Genetics, 2019, 9, 2739-2748.	1.8	24
27	Understanding the Complexity of Cold Tolerance in White Clover using Temperature Gradient Locations and a GWAS Approach. Plant Genome, 2018, 11, 170096.	2.8	23
28	Mapping Fusiform Rust Resistance Genes within a Complex Mating Design of Loblolly Pine. Forests, 2014, 5, 347-362.	2.1	22
29	Population structure and genetic diversity of coffee progenies derived from CatuaÃ-and HÃbrido de Timor revealed by genome-wide SNP marker. Tree Genetics and Genomes, 2017, 13, 1.	1.6	22
30	Exome Resequencing Reveals Evolutionary History, Genomic Diversity, and Targets of Selection in the Conifers <i>Pinus taeda</i> and <i>Pinus elliottii</i> . Genome Biology and Evolution, 2019, 11, 508-520.	2.5	19
31	Accelerating forest tree breeding by integrating genomic selection and greenhouse phenotyping. Plant Genome, 2020, 13, e20048.	2.8	19
32	The effect of bienniality on genomic prediction of yield in arabica coffee. Euphytica, 2020, 216, 1.	1.2	19
33	Ganhos genéticos preditos por diferentes métodos de seleção em progênies de Eucalyptus urophylla. Pesquisa Agropecuaria Brasileira, 2009, 44, 1653-1659.	0.9	18
34	Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in <i>Populus deltoides</i> . Genome Research, 2020, 30, 1131-1143.	5.5	18
35	Genotyping-By-Sequencing diversity analysis of international Vanilla collections uncovers hidden diversity and enables plant improvement. Plant Science, 2021, 311, 111019.	3.6	17
36	Improvement of predictive ability in maize hybrids by including dominance effects and markerÂ×Âenvironment models. Crop Science, 2020, 60, 666-677.	1.8	14

MARCIO FERNANDO RIBEIRO DE

#	Article	IF	CITATIONS
37	Genomic selection prediction models comparing sequence capture and SNP array genotyping methods. Molecular Breeding, 2018, 38, 1.	2.1	13
38	Genomic prediction applied to multiple traits and environments in second season maize hybrids. Heredity, 2020, 125, 60-72.	2.6	12
39	Competitive Growth Assay of Mutagenized Chlamydomonas reinhardtii Compatible With the International Space Station Veggie Plant Growth Chamber. Frontiers in Plant Science, 2020, 11, 631.	3.6	12
40	Plant Domestication: Reconstructing the Route toÂModern Tomatoes. Current Biology, 2020, 30, R359-R361.	3.9	10
41	Genomic prediction for canopy height and dry matter yield in alfalfa using family bulks. Plant Genome, 2022, 15, .	2.8	10
42	Characterizing the Physical Properties and Cell Compatibility of Phytoglycogen Extracted from Different Sweet Corn Varieties. Molecules, 2020, 25, 637.	3.8	9
43	Genetic Perturbation of the Starch Biosynthesis in Maize Endosperm Reveals Sugar-Responsive Gene Networks. Frontiers in Plant Science, 2021, 12, 800326.	3.6	8
44	Genomic prediction in family bulks using different traits and cross-validations in pine. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
45	Limitedâ€ŧranspiration rate and plant conductance in a diverse sweet corn population. Crop Science, 2022, 62, 374-381.	1.8	7
46	Cost-effective detection of genome-wide signatures for 2,4-D herbicide resistance adaptation in red clover. Scientific Reports, 2019, 9, 20037.	3.3	6
47	The Genetic Regulation of Alternative Splicing in Populus deltoides. Frontiers in Plant Science, 2020, 11, 590.	3.6	5
48	Tombamento de mudas de espécies florestais causado por Sclerotium rolfsii Sacc. Revista Arvore, 2007, 31, 629-634.	0.5	5
49	Comparison of water flow capacity in leaves among sweet corn genotypes as basis for plant transpiration rate sensitivity to vapor pressure deficit. Crop Science, 0, , .	1.8	3
50	Genotyping-by-sequencing of passion fruit (Passiflora spp.) generates genomic resources for breeding and systematics. Genetic Resources and Crop Evolution, 2022, 69, 2769-2786.	1.6	3
51	Mega-environment analysis of maize breeding data from Brazil. Scientia Agricola, 2022, 79, .	1.2	2
52	Maize Genome Assembly with PacBio Reads. Bio-protocol, 2022, 12, .	0.4	0