Mario Hoyos Nunez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528460/publications.pdf

Version: 2024-02-01

759190 713444 37 474 12 21 h-index g-index citations papers 38 38 38 695 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of high thermal stability Polypropylene copolymers with pyrrole functionality. Materials Today Communications, 2022, 31, 103469.	1.9	2
2	A Physical Unclonable Function Based on Recyclable Polymer Nanoparticles to Enable the Circular Economy. ACS Applied Nano Materials, 2022, 5, 13752-13760.	5.0	8
3	Exploring Functionalities for the Development of High Thermal Stability Polypropylene-Based Dielectrics. ACS Applied Energy Materials, 2021, 4, 25-29.	5.1	3
4	†In-Situ' Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application. Journal of Composites Science, 2020, 4, 87.	3.0	3
5	Dielectric Properties of All-Organic Coatings: Comparison of PEDOT and PANI in Epoxy Matrices. Journal of Composites Science, 2020, 4, 26.	3.0	2
6	In-Situ Approaches for the Preparation of Polythiophene-Derivative Cellulose Composites with High Flexibility and Conductivity. Applied Sciences (Switzerland), 2019, 9, 3371.	2.5	9
7	Electrical treeing in nanocomposite based on LDPE/EVA blends. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26, 1287-1292.	2.9	4
8	Direct Oral Anticoagulant Use in Atypical Thrombosis-Related Conditions. Annals of Pharmacotherapy, 2018, 52, 185-197.	1.9	3
9	Polymer/Ionic Liquid Thermoplastic Electrolytes for Energy Storage Processed by Solvent Free Procedures. ACS Sustainable Chemistry and Engineering, 2016, 4, 2114-2121.	6.7	17
10	Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides. , 2016, , 1061-1100.		0
11	Electrical treeing characterisation of nanocomposite blends. , 2015, , .		2
12	Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides. , 2015, , 1-35.		0
13	Superhydrophobic and Highly Luminescent Polyfluorene/Silica Hybrid Coatings Deposited onto Glass and Cellulose-Based Substrates. Langmuir, 2015, 31, 3718-3726.	3.5	15
14	Electrical treeing in LDPE-EVA blend based nanocomposites. , 2014, , .		3
15	Extended conjugation in poly(triarylamine)s: synthesis, structure and impact on field-effect mobility. Journal of Materials Chemistry C, 2014, 2, 6520-6528.	5. 5	13
16	Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica. ACS Applied Materials & Materiaces, 2014, 6, 18998-19010.	8.0	36
17	Triarylamine polymers of bridged phenylenes by (N-heterocyclic carbene)-palladium catalysed C–N coupling. Journal of Materials Chemistry C, 2013, 1, 3327.	5. 5	17
18	(<i>N</i> -Heterocyclic carbene)Pd(triethylamine)Cl ₂ as precatalyst for the synthesis of Poly(triarylamine)s. Journal of Polymer Science Part A, 2013, 51, 4904-4911.	2.3	10

#	Article	IF	Citations
19	(<i>N</i> â€heterocyclic carbene)â€Pd catalyzed synthesis of poly(triarylamine)s by Buchwaldâ€Hartwig coupling of aryl chlorides. Journal of Polymer Science Part A, 2012, 50, 4155-4160.	2.3	13
20	Synthesis of poly(triarylamine)s by C–N coupling catalyzed by (N-heterocyclic carbene)-palladium complexes. Reactive and Functional Polymers, 2012, 72, 337-340.	4.1	11
21	Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti-POSS by direct reactive blending. Polymer Degradation and Stability, 2011, 96, 1793-1798.	5.8	19
22	Recent Advances in Polythiophene Synthesis by Palladium-Catalyzed Cross-Coupling Reactions. Current Organic Chemistry, 2011, 15, 3263-3290.	1.6	16
23	Influence of microstructure and semi-crystalline morphology on the \hat{l}^2 and \hat{l}^3 mechanical relaxations of the metallocene isotactic polypropylene. European Polymer Journal, 2009, 45, 1322-1327.	5.4	15
24	Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polymer Degradation and Stability, 2009, 94, 39-48.	5.8	86
25	Evidence of a monoclinic-like amorphous phase in composites of LDPE with spherical, fibrous and laminar nanofillers as studied by infrared spectroscopy. European Polymer Journal, 2009, 45, 30-39.	5.4	9
26	Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1301-1311.	2.1	31
27	Use of dynamic space charge measurements to differentiate charge injection and ionic dissociation in polypropylene. , 2008, , .		0
28	Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins. Science and Technology of Advanced Materials, 2008, 9, 024404.	6.1	3
29	The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates. Journal Physics D: Applied Physics, 2008, 41, 125208.	2.8	38
30	Charge injection and charge separation as revealed by dynamic space charge measurement in poly(propylene-ethylene) copolymer films. Journal of Applied Physics, 2008, 104, .	2.5	5
31	Resistance to surface partial discharges of LDPE nanocomposites. , 2007, , .		8
32	Electrical treeing inception and growth in LDPE nanocomposites. , 2007, , .		5
33	The grafting of luminescent side groups onto poly(vinyl chloride) and the identification of local structural features. Polymer Degradation and Stability, 2007, 92, 2300-2307.	5.8	4
34	The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The α relaxation. Polymer, 2007, 48, 183-194.	3.8	36
35	AC electrical strength measurements on LDPE nanocomposites. , 2006, , .		8
36	Role of the interphase dynamics in the induction time of the thermo-oxidation of isotactic polypropylene. Polymer Degradation and Stability, 2006, 91, 1433-1442.	5.8	12