Mario Hoyos Nunez

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3528460/publications.pdf
Version: 2024-02-01

Synthesis of high thermal stability Polypropylene copolymers with pyrrole functionality. Materials
1 Today Communications, 2022, 31, 103469.A Physical Unclonable Function Based on Recyclable Polymer Nanoparticles to Enable the Circular5.0Economy. ACS Applied Nano Materials, 2022, 5, 13752-13760.
$5.0 \quad 8$
2 A Physical Unclonable Function Based on Recyclable Polymer Nanoparticles to Enable the Circular Economy. ACS Applied Nano Materials, 2022, 5, 13752-13760.
8

$$
\begin{align*}
& \text { Exploring Functionalities for the Development of High Thermal Stability Polypropylene-Based } \\
& \text { Dielectrics. ACS Applied Energy Materials, 2021, 4, 25-29. }
\end{align*}
$$

3for Flexible Pseudocapacitor Application. Journal of Composites Science, 2020, 4, 87.
Dielectric Properties of All-Organic Coatings: Comparison of PEDOT and PANI in Epoxy Matrices.
Journal of Composites Science, 2020, 4, 26.
5 Journal of Composites Science, 2020, 4, 26.3.0$3.0 \quad 2$6 In-Situ Approaches for the Preparation of Polythiophene-Derivative Cellulose Composites with High$2.5 \quad 9$
Flexibility and Conductivity. Applied Sciences (Switzerland), 2019, 9, 3371. 69
7 Electrical treeing in nanocomposite based on LDPE/EVA blends. IEEE Transactions on Dielectrics and 2.9 4
7 Electrical Insulation, 2019, 26, 1287-1292. 8 Direct Oral Anticoagulant Use in Atypical Thrombosis-Related Conditions. Annals ofPharmacotherapy, 2018, 52, 185-197.
$9 \quad$ Polymer/lonic Liquid Thermoplastic Electrolytes for Energy Storage Processed by Solvent Free 6.7 17
Procedures. ACS Sustainable Chemistry and Engineering, 2016, 4, 2114-2121. Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides. , 2016, ,
11 Electrical treeing characterisation of nanocomposite blends. , 2015, , .2
12 Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides. , 2015, ,1-35.0
13 Superhydrophobic and Highly Luminescent Polyfluorene/Silica Hybrid Coatings Deposited onto Class Superhydrophobic and Highly Luminescent Polyfluorene/Silica Hyb
and Cellulose-Based Substrates. Langmuir, 2015, 31, 3718-3726. 3.5 15
14 Electrical treeing in LDPE-EVA blend based nanocomposites. , 2014, , .3
15 Extended conjugation in poly(triarylamine)s: synthesis, structure and impact on field-effect mobility. 5.5 13 Journal of Materials Chemistry C, 2014, 2, 6520-6528.Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-ModifiedNanosilica. ACS Applied Materials \& Interfaces, 2014, 6, 18998-19010.
Triarylamine polymers of bridged phenylenes by (N -heterocyclic carbene)-palladium catalysed Câ€" N
coupling. Journal of Materials Chemistry C, 2013, 1, 3327.
5.5 17
19
20

> (<i>N</i>â€heterocyclic carbene)â€Pd catalyzed synthesis of poly(triarylamine)s by Buchwaldâ€Hartwig coupling of aryl chlorides. Journal of Polymer Science Part A, 2012, 50, 4155-4160.
2.3

13

Synthesis of poly(triarylamine)s by Câ $€$ " N coupling catalyzed by (N-heterocyclic carbene)-palladium complexes. Reactive and Functional Polymers, 2012, 72, 337-340.
4.1

11

21 Novel hybrid systems based on poly(propylene-g-maleic anhydride) and Ti-POSS by direct reactive
5.8
blending. Polymer Degradation and Stability, 2011, 96, 1793-1798.

Recent Advances in Polythiophene Synthesis by Palladium-Catalyzed Cross-Coupling Reactions.
Current Organic Chemistry, 2011, 15, 3263-3290.

Influence of microstructure and semi-crystalline morphology on the $\hat{\imath}^{2}$ and $\hat{\imath} 3$ mechanical relaxations of
the metallocene isotactic polypropylene. European Polymer Journal, 2009, 45, 1322-1327.
5.4

Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polymer
Degradation and Stability, 2009, 94, 39-48.
5.8

86
$25 \quad \begin{aligned} & \text { Evidence of a monoclinic-like amorphous phase in composites of LDPE with spherical, fibrous and } \\ & \text { laminar nanofillers as studied by infrared spectroscopy. European Polymer lournal, 2009, 45, 30-39. }\end{aligned}$
laminar nanofillers as studied by infrared spectroscopy. European Polymer Journal, 2009, 45, 30-39.
5.4

9

Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous
and laminar silicates. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1301-1311.
2.1

31

> 27 Use of dynamic space charge measurements to differentiate charge injection and ionic dissociation in
> polypropylene. , 2008, ,

Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins.
Science and Technology of Advanced Materials, 2008, 9, 024404.
6.1

3

> The development of electrical treeing in LDPE and its nanocomposites with spherical silica and
> fibrous and laminar silicates. Journal Physics D: Applied Physics, 2008, 41, 125208 .

Charge injection and charge separation as revealed by dynamic space charge measurement in poly (propylene-ethylene) copolymer films. Journal of Applied Physics, 2008, 104, .

31 Resistance to surface partial discharges of LDPE nanocomposites. , 2007, , .
8

32 Electrical treeing inception and growth in LDPE nanocomposites. , 2007, , .
5

> 33 The grafting of luminescent side groups onto poly(vinyl chloride) and the identification of local
> structural features. Polymer Degradation and Stability, 2007, 92, 2300-2307.
5.8

The role of microstructure, molar mass and morphology on local relaxations in isotactic polypropylene. The $\mathrm{I} \pm$ relaxation. Polymer, 2007, 48, 183-194.

