Elriks KupÄe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528380/publications.pdf Version: 2024-02-01

FÌ DIKS KUDÄF

#	Article	IF	CITATIONS
1	Modular Pulse Program Generation for NMR Supersequences. Analytical Chemistry, 2022, 94, 2271-2278.	6.5	12
2	Uniform water-mediated saturation transfer: A sensitivity-improved alternative to WaterLOGSY. Journal of Magnetic Resonance, 2022, 338, 107190.	2.1	3
3	Hadamard acquisition of 13 C– 13 C 2â€Ð correlation NMR spectra. Magnetic Resonance in Chemistry, 2021, 59, 247-256.	1.9	1
4	3D Heteronuclear Magnetization Transfers for the Establishment of Secondary Structures in SARS-CoV-2-Derived RNAs. Journal of the American Chemical Society, 2021, 143, 4942-4948.	13.7	8
5	Parallel nuclear magnetic resonance spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	21.2	20
6	2D NMR-Based Metabolomics with HSQC/TOCSY NOAH Supersequences. Analytical Chemistry, 2021, 93, 6112-6119.	6.5	28
7	Magnetization Transfer to Enhance NOE Crossâ€Peaks among Labile Protons: Applications to Imino–Imino Sequential Walks in SARSâ€CoVâ€2â€Derived RNAs. Angewandte Chemie - International Edition, 2021, 60, 11884-11891.	13.8	11
8	Multiplexing experiments in NMR and multi-nuclear MRI. Progress in Nuclear Magnetic Resonance Spectroscopy, 2021, 124-125, 1-56.	7.5	22
9	Increasing sensitivity and versatility in NMR supersequences with new HSQC-based modules. Journal of Magnetic Resonance, 2021, 329, 107027.	2.1	12
10	Parallel NMR Supersequences: Ten Spectra in a Single Measurement. Jacs Au, 2021, 1, 1892-1897.	7.9	17
11	The Extended Hadamard Transform: Sensitivityâ€Enhanced NMR Experiments Among Labile and Nonâ€Labile 1 Hs of SARSâ€CoVâ€2â€derived RNAs. ChemPhysChem, 2021, , .	2.1	2
12	Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids. Nature Communications, 2020, 11, 5317.	12.8	20
13	Perspectives of adiabatic decoupling in liquids. Journal of Magnetic Resonance, 2020, 318, 106799.	2.1	5
14	New NOAH modules for structure elucidation at natural isotopic abundance. Journal of Magnetic Resonance, 2019, 307, 106568.	2.1	18
15	Triplet <scp>NOAH</scp> supersequences optimised for small molecule structure characterisation. Magnetic Resonance in Chemistry, 2019, 57, 946-952.	1.9	22
16	Experiments with direct detection of multiple FIDs. Journal of Magnetic Resonance, 2019, 304, 16-34.	2.1	16
17	Natural Abundance, Single-Scan13C–13C-Based Structural Elucidations by Dissolution DNP NMR. Journal of the American Chemical Society, 2019, 141, 1857-1861.	13.7	10
18	Practical Guidelines for 13C-Based NMR Metabolomics. Methods in Molecular Biology, 2019, 2037, 69-95.	0.9	10

EÌ...RIKS KUPÄE

#	Article	IF	CITATIONS
19	Recording 13C-15N HMQC 2D sparse spectra in solids in 30†s. Journal of Magnetic Resonance, 2018, 288, 76-83.	2.1	3
20	Molecular structure from a single NMR supersequence. Chemical Communications, 2018, 54, 7139-7142.	4.1	33
21	Rapid elucidation of chemical shift correlations in complex NMR spectra of organic molecules: Two-dimensional Hadamard pure shift NMR spectroscopy. Journal of Magnetic Resonance, 2018, 293, 77-81.	2.1	6
22	2BOB – extracting an H2BC and an HSQCâ€ŧype spectrum from the same data set, and H2OBC – a fast experiment delineating the protonated ¹³ C backbone. Magnetic Resonance in Chemistry, 2017, 55, 515-518.	1.9	14
23	13 C detected 15 N 13 C coupling measurements at the natural isotopic abundance. Journal of Magnetic Resonance, 2017, 279, 68-73.	2.1	1
24	NOAH: NMR Supersequences for Small Molecule Analysis and Structure Elucidation. Angewandte Chemie, 2017, 129, 11941-11945.	2.0	8
25	NOAH: NMR Supersequences for Small Molecule Analysis and Structure Elucidation. Angewandte Chemie - International Edition, 2017, 56, 11779-11783.	13.8	76
26	Parallel NMR spectroscopy with simultaneous detection of ¹ H and ¹⁹ F nuclei. Magnetic Resonance in Chemistry, 2016, 54, 544-560.	1.9	25
27	Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers. Magnetic Resonance in Chemistry, 2015, 53, 940-944.	1.9	14
28	Exploiting natural abundance ¹³ C- ¹⁵ N coupling as a method for identification of nitrogen heterocycles: practical use of the HCNMBC sequence. Magnetic Resonance in Chemistry, 2015, 53, 363-368.	1.9	11
29	Solid-state Hadamard NMR spectroscopy: Simultaneous measurements of multiple selective homonuclear scalar couplings. Journal of Magnetic Resonance, 2015, 251, 8-12.	2.1	12
30	Chapter 7. NMR Spectroscopy Using Several Parallel Receivers. , 2015, , 119-145.		3
31	HCNMBC – A pulse sequence for H–(C)–N Multiple Bond Correlations at natural isotopic abundance. Journal of Magnetic Resonance, 2014, 247, 38-41.	2.1	17
32	Mapping Molecular Perturbations by a New Form of Two-Dimensional Spectroscopy. Journal of the American Chemical Society, 2013, 135, 2871-2874.	13.7	21
33	Multiple Parallel 2Dâ€NMR Acquisitions in a Single Scan. Angewandte Chemie - International Edition, 2013, 52, 4152-4155.	13.8	29
34	Parallel acquisition of multi-dimensional spectra in protein NMR. Journal of Biomolecular NMR, 2012, 54, 1-7.	2.8	34
35	NMR with Multiple Receivers. Topics in Current Chemistry, 2011, 335, 71-96.	4.0	38
36	Parallel receivers and sparse sampling in multidimensional NMR. Journal of Magnetic Resonance, 2011, 213, 1-13.	2.1	28

EÌ...RIKS KUPÄE

#	Article	IF	CITATIONS
37	Molecular structure from a single NMR sequence (fast-PANACEA). Journal of Magnetic Resonance, 2010, 206, 147-153.	2.1	57
38	Multiple receiver experiments for NMR spectroscopy of organosilicon compounds. Applied Organometallic Chemistry, 2010, 24, 837-841.	3.5	19
39	Detecting the "Afterglow―of13C NMR in Proteins Using Multiple Receivers. Journal of the American Chemical Society, 2010, 132, 18008-18011.	13.7	47
40	Hyperdimensional NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2008, 52, 22-30.	7.5	39
41	Molecular Structure from a Single NMR Experiment. Journal of the American Chemical Society, 2008, 130, 10788-10792.	13.7	70
42	Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Physics, 2007, 127, 034507.	3.0	20
43	Fast multidimensional NMR by polarization sharing. Magnetic Resonance in Chemistry, 2007, 45, 2-4.	1.9	153
44	Two-dimensional spectroscopy with parallel acquisition of1HX and19FX correlations. Magnetic Resonance in Chemistry, 2007, 45, 378-380.	1.9	36
45	SPEED: singleâ€point evaluation of the evolution dimension. Magnetic Resonance in Chemistry, 2007, 45, 711-713.	1.9	25
46	Compensated adiabatic inversion pulses: Broadband INEPT and HSQC. Journal of Magnetic Resonance, 2007, 187, 258-265.	2.1	81
47	Parallel Acquisition of Two-Dimensional NMR Spectra of Several Nuclear Species. Journal of the American Chemical Society, 2006, 128, 9606-9607.	13.7	102
48	Hyperdimensional NMR Spectroscopy. Journal of the American Chemical Society, 2006, 128, 6020-6021.	13.7	55
49	Hadamard NMR spectroscopy in solids. Journal of Magnetic Resonance, 2006, 178, 129-135.	2.1	17
50	Emerging Techniques in Fast Multidimensional NMR. , 2006, , 129-145.		3
51	Resolving ambiguities in two-dimensional NMR spectra: the â€~TILT' experiment. Journal of Magnetic Resonance, 2005, 172, 329-332.	2.1	18
52	Fast multidimensional NMR: radial sampling of evolution space. Journal of Magnetic Resonance, 2005, 173, 317-321.	2.1	65
53	SOFAST-HMQC Experiments for Recording Two-dimensional Deteronuclear Correlation Spectra of Proteins within a Few Seconds. Journal of Biomolecular NMR, 2005, 33, 199-211.	2.8	603
54	The radon transform: A new scheme for fast multidimensional NMR. Concepts in Magnetic Resonance, 2004, 22A, 4-11.	1.3	61

EÌ...RIKS KUPÄE

#	Article	IF	CITATIONS
55	Distant echoes of the accordion: Reduced dimensionality, GFT-NMR, and projection-reconstruction of multidimensional spectra. Concepts in Magnetic Resonance, 2004, 23A, 63-75.	1.3	54
56	Projectionâ^'Reconstruction Technique for Speeding up Multidimensional NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 6429-6440.	13.7	235
57	Hadamard NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2003, 42, 95-122.	7.5	193
58	Two-dimensional Hadamard spectroscopy. Journal of Magnetic Resonance, 2003, 162, 300-310.	2.1	123
59	Fast multi-dimensional Hadamard spectroscopy. Journal of Magnetic Resonance, 2003, 163, 56-63.	2.1	84
60	Frequency-domain Hadamard spectroscopy. Journal of Magnetic Resonance, 2003, 162, 158-165.	2.1	65
61	Applications of Adiabatic Pulses in Biomolecular Nuclear Magnetic Resonance. Methods in Enzymology, 2002, 338, 82-111.	1.0	33
62	Homonuclear Decoupling in Proteins. , 2002, , 149-193.		5
63	Strange Effects of Pulse Shaping in Water Presaturation Experiments. Journal of Magnetic Resonance, 2000, 146, 240-244.	2.1	1
64	Adiabatic Mixing in the Liquid State. Journal of Magnetic Resonance, 1998, 135, 361-367.	2.1	43
65	Decoupling: theory and practice I. Current methods and recent concepts. , 1997, 10, 372-380.		29
66	Compensation for Spin–Spin Coupling Effects during Adiabatic Pulses. Journal of Magnetic Resonance, 1997, 127, 36-48.	2.1	77
67	Effect of Sweep Direction on Sidebands in Adiabatic Decoupling. Journal of Magnetic Resonance, 1997, 129, 219-221.	2.1	13
68	An adaptable NMR broadband decoupling scheme. Chemical Physics Letters, 1996, 250, 523-527.	2.6	34
69	Optimized Adiabatic Pulses for Wideband Spin Inversion. Journal of Magnetic Resonance Series A, 1996, 118, 299-303.	1.6	186
70	Suppression of Cycling Sidebands Using Bi-level Adiabatic Decoupling. Journal of Magnetic Resonance Series A, 1996, 122, 81-84.	1.6	55
71	Stretched Adiabatic Pulses for Broadband Spin Inversion. Journal of Magnetic Resonance Series A, 1995, 117, 246-256.	1.6	155
72	Wideband Homonuclear Decoupling in Protein Spectra. Journal of Magnetic Resonance Series B, 1995, 109. 329-333.	1.6	65