Robert J Newport

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528365/publications.pdf

Version: 2024-02-01

71061 102432 5,693 169 41 66 citations h-index g-index papers 169 169 169 5010 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magnesium incorporation into hydroxyapatite. Biomaterials, 2011, 32, 1826-1837.	5.7	296
2	Bioactive functional materials: a perspective on phosphate-based glasses. Journal of Materials Chemistry, 2009, 19, 690-701.	6.7	289
3	TOSCA neutron spectrometer: The final configuration. Applied Physics A: Materials Science and Processing, 2002, 74, s64-s66.	1.1	180
4	Antimicrobial Galliumâ€Doped Phosphateâ€Based Glasses. Advanced Functional Materials, 2008, 18, 732-741.	7.8	161
5	Structure and properties of strontium-doped phosphate-based glasses. Journal of the Royal Society Interface, 2009, 6, 435-446.	1.5	135
6	Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1422-1443.	1.6	115
7	Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomaterialia, 2009, 5, 1198-1210.	4.1	108
8	Effect of Silver Content on the Structure and Antibacterial Activity of Silver-Doped Phosphate-Based Glasses. Antimicrobial Agents and Chemotherapy, 2007, 51, 4453-4461.	1.4	103
9	Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224, 1373-1387.	1.0	102
10	Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. Journal of Non-Crystalline Solids, 2007, 353, 1141-1149.	1.5	101
11	Structural properties of amorphous hydrogenated carbon. III. NMR investigations. Physical Review B, 1994, 50, 846-852.	1.1	95
12	Systematic empirical analysis of calcium–oxygen coordination environment by calcium K-edge XANES. Physical Chemistry Chemical Physics, 2004, 6, 188-192.	1.3	89
13	The effect of composition on the structure of sodium borophosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 3671-3677.	1.5	87
14	Effect of Calcium Source on Structure and Properties of Sol–Gel Derived Bioactive Glasses. Langmuir, 2012, 28, 17465-17476.	1.6	87
15	EXAFS studies of rare-earth metaphosphate glasses. Physical Review B, 1996, 53, 5268-5275.	1.1	86
16	Do â€~passive' medical titanium surfaces deteriorate in service in the absence of wear?. Journal of the Royal Society Interface, 2012, 9, 3161-3164.	1.5	83
17	XANES Study of Ti Coordination in Heat-Treated (TiO2)x(SiO2)1-xXerogels. Chemistry of Materials, 1999, 11, 1253-1258.	3.2	76
18	A structural study of sol–gel and melt-quenched phosphate-based glasses. Journal of Non-Crystalline Solids, 2007, 353, 1759-1765.	1.5	75

#	Article	IF	CITATIONS
19	A Neutron and Xâ€Ray Diffraction Study of Bioglass < sup>® < /sup> with Reverse Monte Carlo Modelling. Advanced Functional Materials, 2007, 17, 3746-3753.	7.8	74
20	Structure of (ZrO2)x(SiO2)1-x xerogels (x=0.1, 0.2, 0.3 and 0.4) from FTIR, 29Si and 17O MAS NMR and EXAFS. Physical Chemistry Chemical Physics, 1999, 1, 2527-2533.	1.3	70
21	Changes in the Zr environment in zirconia–silica xerogels with composition and heat treatment as revealed by Zr K-edge XANES and EXAFS. Physical Chemistry Chemical Physics, 2000, 2, 2455-2460.	1.3	70
22	Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 1081-1091.	1.3	70
23	Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. Journal of Materials Chemistry, 2005, 15, 2134.	6.7	69
24	An exafs study of the cluster molecule Au55(PPh3)12Cl6. Solid State Communications, 1990, 73, 431-436.	0.9	64
25	A structural study of (TiO2)x(SiO2)1â^'x (x=0.18, 0.30 and 0.41) xerogels prepared using acetylacetone. Journal of Materials Chemistry, 1999, 9, 1299-1305.	6.7	63
26	Sulfur and iron speciation in recently recovered timbers of the Mary Rose revealed via X-ray absorption spectroscopy. Journal of Archaeological Science, 2008, 35, 1317-1328.	1.2	61
27	The structure of a bioactive calcia–silica sol–gel glass. Journal of Materials Chemistry, 2005, 15, 2369.	6.7	60
28	An x-ray diffraction and 31P MAS NMR study of rare-earth phosphate glasses, (R2O3)x(P2O5)1-x,x= 0.175-0.263, R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er. Journal of Physics Condensed Matter, 2001, 13, 4105-4122.	0.7	58
29	Crystal Structures and Magnetic Properties of Rare-Earth Ultraphosphates, RP5O14 (R=La, Nd, Sm, Eu,) Tj ETQq1	1 0.78431 1.4	4 _{rg} BT /Ove
30	Probing the local structural environment of calcium by natural-abundance solid-stateCa43NMR. Physical Review B, 2004, 69, .	1.1	55
31	Synthesis, characterisation and performance of (TiO2)0.18(SiO2)0.82 xerogel catalysts. Journal of Materials Chemistry, 2000, 10, 2495-2501.	6.7	53
32	Sol–gel synthesis and structural characterisation of P ₂ O ₃ –Na ₂ O glasses for biomedical applications. Journal of Materials Chemistry, 2009, 19, 150-158.	6.7	53
33	New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterisation. Journal of Materials Chemistry, 2007, 17, 4777.	6.7	52
34	The structure and properties of silver-doped phosphate-based glasses. Journal of Materials Science, 2007, 42, 9827-9835.	1.7	52
35	A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction. Journal of Materials Science: Materials in Medicine, 2009, 20, 883-888.	1.7	51
36	Neutron Compton scattering from amorphous hydrogenated carbon. Journal of Physics Condensed Matter, 1994, 6, 641-658.	0.7	50

#	Article	IF	Citations
37	Doping of a high calcium oxide metaphosphate glass with titanium dioxide. Journal of Non-Crystalline Solids, 2009, 355, 991-1000.	1.5	50
38	Structural properties of amorphous hydrogenated carbon. I. A high-resolution neutron-diffraction study. Physical Review B, 1994, 50, 831-838.	1.1	48
39	Preparation, structural characterisation and antibacterial properties of Ga-doped sol–gel phosphate-based glass. Journal of Materials Science, 2009, 44, 1858-1867.	1.7	46
40	EXAFS and x-ray structural studies of (Tb2O3)0.26(P2O5)0.74metaphosphate glass. Physical Review B, 1995, 51, 5739-5745.	1.1	45
41	Structural properties of amorphous hydrogenated carbon. II. An inelastic neutron-scattering study. Physical Review B, 1994, 50, 839-845.	1.1	43
42	A rare earth L3-edge EXAFS and L1-edge XANES study of Ce, Nd and Eu phosphate glasses and crystals in the composition range from metaphosphate to ultraphosphate. Journal of Non-Crystalline Solids, 2001, 279, 20-27.	1.5	41
43	Structure of $(Ta2O5)x(SiO2)1$ \hat{a} x xerogels (x = 0.05, 0.11, 0.18, 0.25 and 1.0) from FTIR, 29Si and 17O MAS NMR and EXAFS. Journal of Materials Chemistry, 2000, 10, 1887-1894.	6.7	40
44	The effects of different heat treatment and atmospheres on the NMR signal and structure of TiO2–ZrO2–SiO2 sol–gel materials. Solid State Nuclear Magnetic Resonance, 2003, 23, 88-106.	1.5	40
45	Bioactive glass solâ€gel foam scaffolds: Evolution of nanoporosity during processing and <i>in situ</i> monitoring of apatite layer formation using smallâ€and wideâ€angle Xâ€ay scattering. Journal of Biomedical Materials Research - Part A, 2009, 91A, 76-83.	2.1	40
46	A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Physical Chemistry Chemical Physics, 2012, 14, 12105.	1.3	40
47	An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. Journal of Materials Chemistry, 2012, 22, 22212.	6.7	40
48	A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Materials Chemistry and Physics, 2008, 111, 455-462.	2.0	39
49	An extended x-ray absorption fine structure study of rare-earth phosphate glasses near the metaphosphate composition. Journal of Materials Research, 1999, 14, 4706-4714.	1.2	38
50	An atomic-scale study of the role of titanium in TiO2:SiO2 sol-gel materials. Chemical Physics Letters, 1997, 264, 539-544.	1.2	37
51	The effect of temperature on the structure of amorphous hydrogenated carbon. Journal of Chemical Physics, 1994, 101, 4288-4300.	1.2	36
52	Titanium-containing bioactive phosphate glasses. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 1352-1375.	1.6	36
53	Inelastic neutron scattering of molecular hydrogen in amorphous hydrogenated carbon. Chemical Physics Letters, 1991, 180, 145-148.	1.2	34
54	The structure of molten nickel chloride. Journal of Physics C: Solid State Physics, 1985, 18, 5249-5257.	1.5	33

#	Article	IF	CITATIONS
55	Highâ€energy spin waves in bcc iron. Journal of Applied Physics, 1991, 69, 6219-6221.	1.1	33
56	An EXAFS study of some gold and palladium cluster compounds. Zeitschrift FÃ $^1\!\!/\!\!4$ r Physik D-Atoms Molecules and Clusters, 1993, 26, 8-11.	1.0	33
57	A spectroscopic study of the structure of amorphous hydrogenated carbon. Journal of Physics Condensed Matter, 1995, 7, 10059-10073.	0.7	33
58	Advanced physical characterisation of the structural evolution of amorphous (TiO ₂) _x (SiO ₂) _{1-x} sol-gel materials. Journal of Materials Science, 2004, 39, 6743-6755.	1.7	32
59	Reverse Monte Carlo modeling of amorphous germanium. Physical Review B, 1996, 53, 2405-2410.	1.1	31
60	Sol–Gel Phosphate-based Glass for Drug Delivery Applications. Journal of Biomaterials Applications, 2012, 26, 613-622.	1.2	31
61	TOSCA: a world class inelastic neutron spectrometer. Physica B: Condensed Matter, 1997, 241-243, 154-156.	1.3	30
62	Structural characterisation of hypoxia-mimicking bioactive glasses. Journal of Materials Chemistry B, 2013, 1, 1296.	2.9	30
63	The atomic-scale structure of amorphous hydrogenated carbon. Journal of Physics Condensed Matter, 1995, 7, 1755-1769.	0.7	29
64	A rare-earth K-edge EXAFS study of rare-earth phosphate glasses, $(R2O3)x(P2O5)1-x,x=0.187-0.239$, R = La, Nd, Sm, Eu, Gd, Dy, Er. Journal of Physics Condensed Matter, 2001, 13, 6659-6674.	0.7	29
65	An EXAFS study of rare-earth phosphate glasses in the vicinity of the metaphosphate composition. Journal of Non-Crystalline Solids, 1998, 232-234, 286-292.	1.5	28
66	An EXAFS study of silica–titania sol–gels. Journal of Non-Crystalline Solids, 1998, 232-234, 72-79.	1.5	27
67	A neutron diffraction and 27Al MQMAS NMR study of rare-earth phosphate glasses, $(R2O3)x(P2O5)1-x,x=0.187-0.263$, R = Ce, Nd, Tb containing Al impurities. Journal of Physics Condensed Matter, 1999, 11, 9165-9178.	0.7	27
68	In-situ high-temperature XANES observations of rapid and reversible changes in Ti coordination in titania–silica xerogels. Chemical Physics Letters, 1999, 304, 150-154.	1.2	27
69	Structural studies of bioactivity in sol-gel-derived glasses by X-ray spectroscopy. Journal of Biomedical Materials Research Part B, 2004, 70A, 354-360.	3.0	27
70	A multinuclear solid state NMR study of the sol–gel formation of amorphous Nb2O5–SiO2 materials. Solid State Nuclear Magnetic Resonance, 2005, 27, 28-36.	1.5	27
71	Characterisation of phosphate coacervates for potential biomedical applications. Journal of Biomaterials Applications, 2014, 28, 1226-1234.	1.2	27
72	The structure and electrical properties of liquid semiconductors. I. The structure of liquid NiTe2and NiTe. Journal of Physics C: Solid State Physics, 1982, 15, 4627-4634.	1.5	26

#	Article	lF	CITATIONS
73	Comparing the Atomic Structures of Binary MO2-SiO2 (M = Ti, Zr or Hf) Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 161-164.	1.1	24
74	The structure of calcium metaphosphate glass obtained from x-ray and neutron diffraction and reverse Monte Carlo modelling. Journal of Physics Condensed Matter, 2009, 21, 035109.	0.7	24
75	X-ray diffraction studies of rare-earth metaphosphate glasses. Journal of Physics Condensed Matter, 1996, 8, 3337-3346.	0.7	23
76	Progress in modeling the chemical bonding in tetrahedral amorphous carbon. Physical Review B, 1998, 58, 8267-8276.	1.1	23
77	The Structure of TiO2â~'SiO2Solâ~'Gel Glasses from Neutron Diffraction with Isotopic Substitution of Titanium and17O and49Ti Solid-State NMR with Isotopic Enrichment. Journal of Physical Chemistry B, 2004, 108, 10872-10880.	1.2	23
78	The structure of phosphate glass biomaterials from neutron diffraction and 31P nuclear magnetic resonance data. Journal of Physics Condensed Matter, 2007, 19, 415116.	0.7	23
79	Structural characterization by x-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. Journal of Chemical Physics, 2009, 130, 064708.	1.2	23
80	The effect of zinc and titanium on the structure of calcium–sodium phosphate based glass. Journal of Non-Crystalline Solids, 2010, 356, 1319-1324.	1.5	23
81	X-ray diffraction studies of the effects of N incorporation in amorphous CNx materials. Journal of Applied Physics, 1998, 83, 3529-3534.	1.1	22
82	Direct observation ofR…Rdistances in rare-earth(R)phosphate glasses by magnetic difference neutron diffraction. Physical Review B, 2006, 73, .	1.1	22
83	An X-ray absorption study of gold coordination compounds: EXAFS refinements and double electron excitation background. Journal of Physics Condensed Matter, 1994, 6, 8429-8448.	0.7	21
84	Reverse Monte Carlo modelling of Eu and Tb metaphosphate glasses. Journal of Non-Crystalline Solids, 1998, 232-234, 227-233.	1.5	21
85	The effect of zirconia content on the structure of zirconia-silica xerogels as determined by x-ray and neutron diffraction and Zr K-edge EXAFS and XANES. Journal of Physics Condensed Matter, 2000, 12, 3505-3519.	0.7	21
86	The use of advanced diffraction methods in the study of the structure of a bioactive calcia: silica sol-gel glass. Journal of Materials Science: Materials in Medicine, 2006, 17, 1003-1010.	1.7	21
87	Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2008, 48, 378-383.	1.1	21
88	Ti K-edge XANES study of the local environment of titanium in bioresorbable TiO2–CaO–Na2O–P2O5 glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 1681-1685.	1.7	21
89	The structure and electrical properties of liquid semiconductors. II. Electron transport in liquid Ni-Te alloys. Journal of Physics C: Solid State Physics, 1982, 15, 4635-4640.	1.5	20
90	The structure of molten nickel iodide. Journal of Physics C: Solid State Physics, 1988, 21, 669-680.	1.5	20

#	Article	IF	CITATIONS
91	Sol–gel synthesis and structural characterisation of binary TiO2–P2O5 glasses. Materials Research Bulletin, 2008, 43, 333-342.	2.7	20
92	Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids, 2011, 357, 3548-3555.	1.5	20
93	<i>NXFit</i> : a program for simultaneously fitting X-ray and neutron diffraction pair-distribution functions to provide optimized structural parameters. Journal of Applied Crystallography, 2014, 47, 1790-1796.	1.9	20
94	Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass. Advanced Functional Materials, 2008, 18, 634-639.	7.8	19
95	The atomic structure of niobium and tantalum containing borophosphate glasses. Journal of Physics Condensed Matter, 2009, 21, 375106.	0.7	19
96	EXAFS investigations of high-nuclearity Pd clusters. Physica B: Condensed Matter, 1995, 208-209, 671-673.	1.3	18
97	X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses. Journal of Non-Crystalline Solids, 2006, 352, 3080-3087.	1.5	18
98	The structure of the rare-earth phosphate glass (Sm2O3)0.205(P2O5)0.795studied by anomalous dispersion neutron diffraction. Journal of Physics Condensed Matter, 2007, 19, 056002.	0.7	18
99	Neutron-diffraction studies of amorphous CN x materials. Physical Review B, 1997, 56, 14315-14321.	1.1	17
100	The structure of a C:H by neutron and X-ray scattering. Surface and Coatings Technology, 1991, 47, 668-676.	2.2	16
101	Electron volt spectroscopy on a pulsed neutron source. Nuclear Instruments & Methods in Physics Research, 1984, 224, 120-132.	0.9	15
102	Structural Characterization of Mixed (TiO2)x(ZrO2)y(SiO2)1-x-y Solâ^'Gels (0.05 ≤, y ≤0.15) by a Combination of X-ray and Spectroscopy Techniques. Journal of Physical Chemistry B, 2003, 107, 7557-7566.	1.2	15
103	Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffraction. Physical Chemistry Chemical Physics, 2012, 14, 15807.	1.3	15
104	A survey for variable young stars with small telescopes: First results from HOYS-CAPS. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5091-5103.	1.6	15
105	Structural studies of amorphous Si:Ni:H. Journal of Non-Crystalline Solids, 1989, 113, 41-50.	1.5	14
106	A neutron and X-ray diffraction study of the influence of deposition conditions on the structure of a-C:H. Journal of Non-Crystalline Solids, 1996, 197, 41-52.	1.5	14
107	In situEXAFS and XANES measurements of the change in Ti coordination during the calcination of a (TiO2)0.18(SiO2)0.82aerogel. Journal of Physics Condensed Matter, 2000, 12, 9751-9760.	0.7	14
108	The neutron diffraction anomalous dispersion technique and its application to vitreous Sm2O3·4P2O5. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 622-635.	0.7	14

#	Article	IF	CITATIONS
109	A molecular dynamics model of the atomic structure of dysprosium alumino-phosphate glass. Journal of Physics Condensed Matter, 2009, 21, 075102.	0.7	14
110	Probing vibrational modes in silica glass using inelastic neutron scattering with mass contrast. Physical Review B, $2010,81,.$	1.1	14
111	Structural studies of amorphous Ge-Au alloys. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 63, 457-463.	0.6	13
112	A reverse Monte Carlo modelling study of amorphous hydrogenated carbon. Physica Scripta, 1995, T57, 137-141.	1.2	13
113	Inhomogeneities in acid-catalyzed titania–silica and zirconia–silica xerogels as revealed by small-angle x-ray scattering. Journal of Materials Research, 2000, 15, 1998-2005.	1.2	13
114	Sol–gel preparation and high-energy XRD study of (CaO)x(TiO2)0.5â^'x(P2O5)0.5 glasses (xÂ=Â0 and 0.25). Journal of Materials Science: Materials in Medicine, 2008, 19, 1661-1668.	1.7	13
115	Characterisation of sol–gel prepared (HfO2)x(SiO2)1Ⱂx (x=0.1, 0.2 and 0.4) by 1H, 13C, 17O and 29Si MAS NMR, FTIR and TGA. Solid State Nuclear Magnetic Resonance, 2008, 33, 16-24.	1.5	13
116	The effect of temperature on the structure of amorphous hydrogenated carbon. Physica Scripta, 1995, T57, 142-145.	1.2	12
117	The structural characterization of amorphous thin films and coatings in their as-deposited state using x-rays at shallow angles of incidence. Journal of Materials Research, 1997, 12, 264-276.	1.2	12
118	Sol–gel produced sodium calcium phosphosilicates for bioactive applications: Synthesis and structural characterisation. Materials Chemistry and Physics, 2011, 130, 690-696.	2.0	12
119	Detection of structural heterogeneity in amorphous-C:H films by NMR. Thin Solid Films, 1993, 227, 3-6.	0.8	11
120	An X-ray absorption study of doped silicate glass, fibre optic preforms. Journal of Materials Science, 1996, 31, 485-490.	1.7	11
121	The role of titanium in : mixed sol-gels: an x-ray and neutron diffraction study. Journal of Physics Condensed Matter, 1997, 9, 4001-4016.	0.7	11
122	A comparative study of the structure of sodium borophosphates made by sol–gel and melt-quench methods. Journal of Non-Crystalline Solids, 2010, 356, 490-494.	1.5	11
123	Structural study of Al2O3-Na2O-CaO-P2O5 bioactive glasses as a function of aluminium content. Journal of Chemical Physics, 2013, 138, 034501.	1.2	11
124	A high-resolution neutron-diffraction study of the structure of amorphous hydrogenated carbon, a-C:H. Journal of Physics Condensed Matter, 1993, 5, L387-L392.	0.7	10
125	Role of titanium in TiO2: SiO2sol–gels: an X-ray diffraction study. Journal of Materials Chemistry, 1996, 6, 337-342.	6.7	10
126	A new approach to modelling tetrahedral amorphous carbon. Journal of Physics Condensed Matter, 1997, 9, L457-L463.	0.7	10

#	Article	IF	Citations
127	<i>In situ</i> high-energy X-ray diffraction study of a bioactive calcium silicate foam immersed in simulated body fluid. Journal of Synchrotron Radiation, 2007, 14, 492-499.	1.0	10
128	A Reverse Monte Carlo Modeling Study of Diamondâ€like Carbon. Journal of the Electrochemical Society, 1996, 143, 292-296.	1.3	9
129	The effect of hydrogen dilution on the structure of a-C:H. Journal of Physics Condensed Matter, 1998, 10, 4161-4176.	0.7	9
130	In situhigh temperature x-ray diffraction measurements on a (TiO2)0.18(SiO2)0.82xerogel using a curved image-plate. Journal of Physics Condensed Matter, 2000, 12, 3521-3529.	0.7	9
131	In vitro changes in the structure of a bioactive calcia–silica sol–gel glass explored using isotopic substitution in neutron diffraction. Journal of Non-Crystalline Solids, 2007, 353, 1854-1859.	1.5	9
132	An X-ray absorption spectroscopy study of the local environment of iron in degradable iron–phosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 5542-5546.	1.5	9
133	Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction. Physical Chemistry Chemical Physics, 2013, 15, 8529.	1.3	9
134	Bioactive Sol–Gel Glasses at the Atomic Scale: The Complementary Use of Advanced Probe and Computer Modeling Methods. International Journal of Applied Glass Science, 2016, 7, 147-153.	1.0	9
135	The effect of hydrogen dilution on the interatomic bonding of amorphous hydrogenated silicon: carbon. Journal of Non-Crystalline Solids, 1994, 169, 54-63.	1.5	8
136	An investigation of the structure of amorphous Silâ°xNix through the metal-insulator transition. Physica B: Condensed Matter, 1989, 158, 600-601.	1.3	7
137	New insights into medium-range order around titanium in sol–gel derived silica through isotope difference neutron diffraction and reverse Monte Carlo modelling. Chemical Physics Letters, 2004, 392, 503-507.	1.2	7
138	The resistivity and thermoelectric power of liquid Ag-Pd alloys. Journal of Physics F: Metal Physics, 1981, 11, 2539-2548.	1.6	6
139	Neutron and x-ray diffraction studies of a-C:N:H. Journal of Physics Condensed Matter, 1996, 8, 4739-4750.	0.7	6
140	The resistivity and thermoelectric power of liquid antimony. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1980, 42, 587-591.	0.6	5
141	Test measurements on a resonance filter spectrometer using electronvolt neutrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 238, 177-179.	0.7	5
142	The use of neutron scattering experiments for studying molecular hydrogen in amorphous hydrogenated carbon. Physica B: Condensed Matter, 1992, 180-181, 787-789.	1.3	5
143	Transition Metal Atom Sites in Ternary ZrO2-TiO2-SiO2 Xerogels. Journal of Sol-Gel Science and Technology, 2003, 26, 137-141.	1.1	5
144	An in situ xâ€ray diffraction method for the structure of amorphous thin films using shallow angles of incidence. Review of Scientific Instruments, 1992, 63, 1150-1152.	0.6	4

#	Article	IF	CITATIONS
145	Inelastic neutron scattering of amorphous hydrogenated carbon. Diamond and Related Materials, 1992, 1, 293-297.	1.8	4
146	Comment on "Quantitative Analysis of Tiâ^'Oâ^'Si and Tiâ^'Oâ^'Ti Bonds in Tiâ^'Si Binary Oxides by the Linear Combination of XANES― Journal of Physical Chemistry B, 2001, 105, 6273-6273.	1.2	4
147	Structure of a-C:N:H prepared from ammonia. Journal of Materials Research, 2005, 20, 3338-3345.	1.2	4
148	Neutron diffraction study of antibacterial bioactive calcium silicate solâ€gel glasses containing silver. International Journal of Applied Glass Science, 2017, 8, 364-371.	1.0	4
149	The structure of a-Si1â^'xSnx:H thin films. Physica B: Condensed Matter, 1990, 167, 247-256.	1.3	3
150	A new model for tetrahedral amorphous carbon (ta-C). Journal of Non-Crystalline Solids, 1998, 232-234, 694-701.	1.5	3
151	Nanoscale Heterogeneities in Amorphous Semiconductor _{<i>x</i>} metal _{1–<i>x</i>} Alloys: A Small-angle X-ray Scattering Study. Journal of Materials Research, 1999, 14, 1272-1278.	1.2	3
152	Molecular dynamics modelling of sodium and calcium metaphosphate glasses for biomaterial applications. Journal of Commonwealth Law and Legal Education, 2016, 57, 245-253.	0.2	3
153	Structural studies of amorphous semiconductor-metal alloys. Vacuum, 1990, 41, 1335-1338.	1.6	2
154	Structural Analysis of Gold Clusters Using Exafs. Materials Research Society Symposia Proceedings, 1992, 272, 289.	0.1	2
155	Small-angle X-ray scattering studies of a-Si:C:H. Journal of Non-Crystalline Solids, 1995, 190, 276-282.	1.5	2
156	Structure of a novel form of carbon: dehydropolycondensed adamantane?. Journal of Materials Chemistry, 1996, 6, 449.	6.7	2
157	Reverse Monte Carlo model calculations on a-C:H two-component systems. Zeitschrift F $ ilde{A}$ 1 /4r Physik B-Condensed Matter, 1996, 101, 631-636.	1.1	2
158	Recent developments of the e.VERDI project at ISIS. Physica B: Condensed Matter, 2004, 350, E837-E840.	1.3	2
159	Direct observation of the $R\hat{a}$ -R separation in rare-earth phosphate glasses. Journal of Non-Crystalline Solids, 2007, 353, 1773-1778.	1.5	2
160	The Structure of Amorphous Hydrogenated Carbon by Neutron Diffraction. Materials Research Society Symposia Proceedings, 1992, 270, 493.	0.1	1
161	A Computer Modelling Study of the Structure of a-C:H. Materials Research Society Symposia Proceedings, 1992, 270, 505.	0.1	1
162	Shallow Angle Xâ∈Ray Diffraction from Asâ∈Deposited Diamond Thin Films. Journal of the Electrochemical Society, 1996, 143, 1033-1037.	1.3	1

#	Article	IF	CITATIONS
163	Solid State NMR as A Probe of Inorganic Materials:Examples From Glasses and Sol-Gels. Materials Research Society Symposia Proceedings, 2006, 984, 1.	0.1	1
164	A high energy X-ray diffraction study of sol–gel derived (Ta2O5) x (SiO2)1â^'x glasses (xÂ=Â0.05, 0.11 and) Tj 153-159.	ETQq0 0 0 1.1	rgBT /Overlo
165	Probing crystallisation of a fluoro-apatite - mullite system using neutron diffraction. Journal of Non-Crystalline Solids, 2016, 451, 84-88.	1.5	1
166	Multiple rare-earth ion environments in amorphous (Gd2O3)0.230 (P2O5)0.770 revealed by gadolinium K-edge anomalous x-ray scattering. Physical Review Materials, 2018, 2, .	0.9	1
167	An X-Ray Scattering Study of Amorphous Hydrogenated Carbon. Materials Research Society Symposia Proceedings, 1992, 270, 457.	0.1	0
168	The Structure of Amorphous Hydrogenated Silicon:Carbon Alloys Using X-Ray and Neutron Scattering and Computer Simulation - The Effect of Hydrogen Dilution. Materials Research Society Symposia Proceedings, 1992, 270, 97.	0.1	0
169	Title is missing!. Journal of Materials Science Letters, 1999, 18, 1553-1553.	0.5	O