Zhuangzhi Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528328/publications.pdf

Version: 2024-02-01

62 4,470 33 59
papers citations h-index g-index

62 62 62 62 6162

62 62 62 6162 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Phase engineering of a multiphasic 1T/2H MoS ₂ catalyst for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2681-2688.	5.2	391
2	MoS ₂ Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catalysis, 2013, 3, 2101-2107.	5 . 5	340
3	Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chemical Society Reviews, 2017, 46, 7176-7190.	18.7	311
4	WS2 nanosheets as a highly efficient electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2012, 125, 59-66.	10.8	295
5	Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 2014, 264, 229-234.	4.0	271
6	Molybdenum phosphide: a new highly efficient catalyst for the electrochemical hydrogen evolution reaction. Chemical Communications, 2014, 50, 11683-11685.	2.2	226
7	Sulfur-Decorated Molybdenum Carbide Catalysts for Enhanced Hydrogen Evolution. ACS Catalysis, 2015, 5, 6956-6963.	5.5	208
8	Swollen Ammoniated MoS ₂ with 1T/2H Hybrid Phases for High-Rate Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 2509-2515.	3.2	194
9	Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS ₂ . Journal of Materials Chemistry A, 2015, 3, 13050-13056.	5.2	140
10	High specific surface area Mo2C nanoparticles as an efficient electrocatalyst for hydrogen evolution. Journal of Power Sources, 2015, 296, 18-22.	4.0	124
11	Ni-doped MoS ₂ nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Advances, 2016, 6, 16656-16661.	1.7	124
12	Structure and phase regulation in MoxC (\hat{l} ±-MoC1-x/ \hat{l} 2-Mo2C) to enhance hydrogen evolution. Applied Catalysis B: Environmental, 2019, 247, 78-85.	10.8	123
13	Polytype 1T/2H MoS2 heterostructures for efficient photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2017, 330, 102-108.	6.6	116
14	Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochemistry Communications, 2013, 34, 219-222.	2.3	109
15	N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. Carbon, 2018, 139, 845-852.	5.4	97
16	Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Applied Catalysis B: Environmental, 2022, 300, 120733.	10.8	85
17	In Situ Preparation of Mo ₂ C Nanoparticles Embedded in Ketjenblack Carbon as Highly Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 983-990.	3.2	83
18	N-doped MoP nanoparticles for improved hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 14566-14571.	3.8	74

#	Article	IF	CITATIONS
19	Tungsten carbide hollow microspheres as electrocatalyst and platinum support for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2015, 40, 3229-3237.	3.8	73
20	Hydrogen evolution catalyzed by cobalt-promoted molybdenum phosphide nanoparticles. Catalysis Science and Technology, 2016, 6, 1952-1956.	2.1	72
21	Influence of Mo/P Ratio on CoMoP nanoparticles as highly efficient HER catalysts. Applied Catalysis A: General, 2016, 511, 11-15.	2.2	66
22	Preparation and Tribological Properties of MoS ₂ Nanosheets. Advanced Engineering Materials, 2010, 12, 534-538.	1.6	62
23	The Fe-promoted MoP catalyst with high activity for water splitting. Applied Catalysis A: General, 2016, 524, 134-138.	2.2	58
24	High-Performance MoC Electrocatalyst for Hydrogen Evolution Reaction Enabled by Surface Sulfur Substitution. ACS Applied Materials & Substitution. ACS Applied Materials & Substitution. ACS Applied Materials & Substitution.	4.0	51
25	Surfactant-assisted fabrication of MoS2 nanospheres. Journal of Materials Science, 2010, 45, 182-187.	1.7	47
26	MoS ₂ nanodot decorated In ₂ S ₃ nanoplates: a novel heterojunction with enhanced photoelectrochemical performance. Chemical Communications, 2016, 52, 1867-1870.	2.2	46
27	Template-free fabrication of hierarchical MoS 2 /MoO 2 nanostructures as efficient catalysts for hydrogen production. Applied Surface Science, 2018, 433, 723-729.	3.1	44
28	Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281, 540-548.	2.6	44
29	Construction of In2Se3/MoS2 heterojunction as photoanode toward efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2019, 358, 752-758.	6.6	42
30	CoNi2S4 nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2017, 42, 3043-3050.	3.8	41
31	Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production. Electrochimica Acta, 2019, 323, 134798.	2.6	35
32	Boosted hydrogen evolution from α-MoC1-x-MoP/C heterostructures. Electrochimica Acta, 2020, 334, 135624.	2.6	34
33	Enhanced energy storage performance from Co-decorated MoS2 nanosheets as supercapacitor electrode materials. Ceramics International, 2018, 44, 13434-13438.	2.3	33
34	Influence of Carbon on Molybdenum Carbide Catalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2016, 8, 1961-1967.	1.8	32
35	Mn-doped porous interconnected MoP nanosheets for enhanced hydrogen evolution. Applied Surface Science, 2021, 551, 149321.	3.1	31
36	Highly Efficient Electrocatalytic N ₂ Reduction to Ammonia over Metallic 1T Phase of MoS ₂ Enabled by Active Sites Separation Mechanism. Advanced Science, 2022, 9, e2103583.	5 . 6	31

#	Article	IF	CITATIONS
37	Silver wrapped MoS2 hybrid electrode materials for high-performance supercapacitor. Journal of Alloys and Compounds, 2017, 708, 763-768.	2.8	29
38	Hierarchical Mo ₂ C/C Scaffolds Organized by Nanosheets as Highly Efficient Electrocatalysts for Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 13995-14003.	3.2	26
39	Amorphous phosphorus-doped MoS ₂ catalyst for efficient hydrogen evolution reaction. Nanotechnology, 2019, 30, 205401.	1.3	25
40	Ultrasonic-assisted preparation of metastable hexagonal MoO3 nanorods and their transformation to microbelts. Ultrasonics Sonochemistry, 2011, 18, 288-292.	3.8	23
41	N, K Co-activated biochar-derived molybdenum carbide as efficient electrocatalysts for hydrogen evolution. Applied Surface Science, 2020, 509, 144879.	3.1	23
42	Enhanced hydrogen evolution from the MoP/C hybrid by the modification of Ketjen Black. Journal of Materials Science, 2017, 52, 3337-3343.	1.7	22
43	Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution. Chinese Journal of Catalysis, 2021, 42, 1798-1807.	6.9	21
44	Effect of Annealing Temperature on Co–MoS2 Nanosheets for Hydrodesulfurization of Dibenzothiophene. Catalysis Letters, 2014, 144, 261-267.	1.4	19
45	Facile synthesis of MoP/MoO2 heterostructures for efficient hydrogen generation. Materials Letters, 2019, 241, 227-230.	1.3	19
46	A facile preparation of WS2 nanosheets as a highly effective HER catalyst. Tungsten, 2019, 1, 101-109.	2.0	19
47	Template-free synthesis of porous Mo3P/MoP nanobelts as efficient catalysts for hydrogen generation. Applied Surface Science, 2019, 493, 740-746.	3.1	16
48	Boosted photo-electro-catalytic hydrogen evolution over the MoS2/MoO2 Schottky heterojunction by accelerating photo-generated charge kinetics. Journal of Alloys and Compounds, 2020, 832, 154970.	2.8	14
49	Modulating electronic structures of holey Mo2N nanobelts by sulfur decoration for enhanced hydrogen generation. Electrochimica Acta, 2020, 364, 137219.	2.6	8
50	Preparation and in-situ strengthening mechanisms of Mo composites with the addition of WC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143478.	2.6	8
51	Boron triggers the phase transformation of Mo <i> _x </i> C (<i>α</i> -MoC _{1â^'<i>x</i>) Tj ETC}	Qq1 1 0.78 1.3	6 4314 rgBT
52	A Novel Non-Equiatomic (W35Ta35Mo15Nb15)95Ni5 Refractory High Entropy Alloy with High Density Fabricated by Powder Metallurgical Process. Metals, 2020, 10, 1436.	1.0	6
53	Facile synthesis of Tungsten Phosphide/Ketjen Black Hybrid Electrocatalyst for Hydrogen Production. Materials Research Express, 2018, 5, 065509.	0.8	5
54	MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation. Materials Letters, 2019, 256, 126622.	1.3	5

#	Article	IF	CITATIONS
55	Synthesis of high-performance Mo–La2O3 powder by hydrogen reduction of MoO2 originated from a self-reduction strategy. Materials Research Express, 2019, 6, 126586.	0.8	5
56	Construction of FeS ₂ @MoS ₂ heterostructures for enhanced hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 2243-2248.	2.5	5
57	Dual-ion intercalated 1T/2H MoS2 with expanded interlayers as supercapacitor electrode materials. Materials Research Express, 2019, 6, 085534.	0.8	4
58	Mn, P Co doped Sharp-edged Mo2C Nanosheets Anchored on Porous Carbon for Efficient Electrocatalytic Hydrogen Evolution. Sustainable Energy and Fuels, 0, , .	2.5	4
59	Mn boosted the electrocatalytic hydrogen evolution of N, P co-doped Mo ₂ C <i>via</i> synergistically tuning the electronic structures. Sustainable Energy and Fuels, 2022, 6, 3363-3370.	2.5	3
60	Boosted mechanical properties of sintered MoLa alloys with ultrafine-grains by the nanostructuring of secondary phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140270.	2.6	2
61	Simple approach to induce solidâ€state oriented growth of MoO ₃ microrods. Micro and Nano Letters, 2016, 11, 102-104.	0.6	0
62	Tungsten-decorated MoP nanobelts for boosted hydrogen production. Materials Research Express, 2020, 7, 015506.	0.8	0