Douglas M Ruderfer

List of Publications by Citations

Source: https://exaly.com/author-pdf/3528055/douglas-m-ruderfer-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162 48,707 145 71 h-index g-index citations papers 162 60,189 8.31 17.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
145	Analysis of protein-coding genetic variation in 60,706 humans. <i>Nature</i> , 2016 , 536, 285-91	50.4	6940
144	Biological insights from 108 schizophrenia-associated genetic loci. <i>Nature</i> , 2014 , 511, 421-7	50.4	5249
143	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. <i>Nature</i> , 2009 , 460, 748-52	50.4	3568
142	Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. <i>Lancet, The</i> , 2013 , 381, 1371-1379	40	2112
141	LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. <i>Nature Genetics</i> , 2015 , 47, 291-5	36.3	2096
140	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. <i>Nature Genetics</i> , 2013 , 45, 984-94	36.3	1628
139	Genome-wide association study identifies five new schizophrenia loci. <i>Nature Genetics</i> , 2011 , 43, 969-76	5 36.3	1508
138	Schizophrenia risk from complex variation of complement component 4. <i>Nature</i> , 2016 , 530, 177-83	50.4	1352
137	Rare chromosomal deletions and duplications increase risk of schizophrenia. <i>Nature</i> , 2008 , 455, 237-41	50.4	1251
136	Association between microdeletion and microduplication at 16p11.2 and autism. <i>New England Journal of Medicine</i> , 2008 , 358, 667-75	59.2	1249
135	De novo mutations in schizophrenia implicate synaptic networks. <i>Nature</i> , 2014 , 506, 179-84	50.4	1163
134	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. <i>Nature Genetics</i> , 2013 , 45, 1150-9	36.3	1153
133	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. <i>Nature Genetics</i> , 2011 , 43, 977-83	36.3	1094
132	A polygenic burden of rare disruptive mutations in schizophrenia. <i>Nature</i> , 2014 , 506, 185-90	50.4	1059
131	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. <i>Nature Genetics</i> , 2008 , 40, 1056-8	36.3	949
130	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. <i>Nature Genetics</i> , 2018 , 50, 381-389	36.3	787
129	Genetic basis of proteome variation in yeast. <i>Nature Genetics</i> , 2007 , 39, 1369-75	36.3	722

(2015-2019)

128	Genome-wide association study identifies 30 loci associated with bipolar disorder. <i>Nature Genetics</i> , 2019 , 51, 793-803	36.3	662
127	Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. <i>American Journal of Human Genetics</i> , 2015 , 97, 576-92	11	649
126	Gene expression elucidates functional impact of polygenic risk for schizophrenia. <i>Nature Neuroscience</i> , 2016 , 19, 1442-1453	25.5	622
125	De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. <i>Molecular Psychiatry</i> , 2012 , 17, 142-53	15.1	611
124	Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. <i>Nature Neuroscience</i> , 2015 , 18, 199-209	25.5	572
123	Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. <i>Science</i> , 2018 , 359, 693-697	33.3	547
122	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. <i>Nature Genetics</i> , 2017 , 49, 27-35	36.3	530
121	Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. <i>Cell</i> , 2012 , 149, 525-37	56.2	441
120	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. <i>Diabetes</i> , 2017 , 66, 28	1886290	2 414
119	Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. <i>American Journal of Human Genetics</i> , 2014 , 95, 535-52	11	411
118	Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. <i>American Journal of Human Genetics</i> , 2012 , 91, 597-607	11	391
117	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. <i>Cell</i> , 2018 , 173, 1705-1715.e16	56.2	360
116	Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. <i>Nature</i> , 2009 , 458, 342-5	50.4	355
115	The ExAC browser: displaying reference data information from over 60 000 exomes. <i>Nucleic Acids Research</i> , 2017 , 45, D840-D845	20.1	348
114	Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. <i>Nature Genetics</i> , 2015 , 47, 1385-92	36.3	299
113	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. <i>Nature Communications</i> , 2016 , 7, 10023	17.4	295
112	Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. <i>American Journal of Human Genetics</i> , 2013 , 92, 197-209	11	293
111	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. <i>Nature Genetics</i> , 2015 , 47, 1415-25	36.3	292

110	Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. <i>Nature Neuroscience</i> , 2016 , 19, 1433-1441	25.5	291
109	Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. <i>Molecular Psychiatry</i> , 2014 , 19, 1017-1024	15.1	258
108	Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. <i>Science</i> , 2006 , 311, 1932-6	33.3	229
107	All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. <i>PLoS Genetics</i> , 2013 , 9, e1003449	6	209
106	Quantifying prion disease penetrance using large population control cohorts. <i>Science Translational Medicine</i> , 2016 , 8, 322ra9	17.5	205
105	Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. <i>Molecular Psychiatry</i> , 2012 , 17, 880-6	15.1	196
104	Copy number variation in schizophrenia in Sweden. <i>Molecular Psychiatry</i> , 2014 , 19, 762-73	15.1	191
103	Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. <i>Neuron</i> , 2013 , 77, 235-42	13.9	190
102	Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. <i>Molecular Psychiatry</i> , 2011 , 16, 286-92	15.1	175
101	A role for noncoding variation in schizophrenia. <i>Cell Reports</i> , 2014 , 9, 1417-29	10.6	174
100	Population genomic analysis of outcrossing and recombination in yeast. <i>Nature Genetics</i> , 2006 , 38, 1077	'-\$ 6.3	173
99	Identification of pathways for bipolar disorder: a meta-analysis. <i>JAMA Psychiatry</i> , 2014 , 71, 657-64	14.5	172
98	Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome. <i>Science</i> , 2015 , 348, 666-9	33.3	170
97	Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. <i>American Journal of Human Genetics</i> , 2014 , 94, 233-45	11	170
96	Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. <i>American Journal of Human Genetics</i> , 2011 , 89, 551-63	11	166
95	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. <i>Nature Neuroscience</i> , 2016 , 19, 420-431	25.5	163
94	Joint analysis of psychiatric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major depressive disorder. <i>American Journal of Human Genetics</i> , 2015 , 96, 283-94	11	161
93	Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. <i>PLoS Genetics</i> , 2006 , 2, e35	6	144

(2018-2016)

92	Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. <i>Nature Genetics</i> , 2016 , 48, 1107-11	36.3	135
91	Accurately assessing the risk of schizophrenia conferred by rare copy-number variation affecting genes with brain function. <i>PLoS Genetics</i> , 2010 , 6, e1001097	6	118
90	Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. <i>Molecular Psychiatry</i> , 2012 , 17, 193-201	15.1	104
89	Phenotype risk scores identify patients with unrecognized Mendelian disease patterns. <i>Science</i> , 2018 , 359, 1233-1239	33.3	101
88	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. <i>Nature Genetics</i> , 2019 , 51, 659-674	36.3	99
87	Genetic basis of individual differences in the response to small-molecule drugs in yeast. <i>Nature Genetics</i> , 2007 , 39, 496-502	36.3	93
86	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. <i>Nature Communications</i> , 2017 , 8, 2225	17.4	92
85	Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces cerevisiae strains. <i>PLoS ONE</i> , 2007 , 2, e322	3.7	88
84	Network-assisted investigation of combined causal signals from genome-wide association studies in schizophrenia. <i>PLoS Computational Biology</i> , 2012 , 8, e1002587	5	86
83	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. <i>Nature Genetics</i> , 2021 , 53, 817-829	36.3	83
82	Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells. <i>Cell Reports</i> , 2016 , 15, 1024-1036	10.6	82
81	Analysis of protein-coding genetic variation in 60,706 humans		81
80	Validation of electronic health record phenotyping of bipolar disorder cases and controls. <i>American Journal of Psychiatry</i> , 2015 , 172, 363-72	11.9	79
79	20.4 MODELING THE CONTRIBUTION OF COMMON VARIANTS TO SCHIZOPHRENIA RISK. <i>Schizophrenia Bulletin</i> , 2018 , 44, S34-S34	1.3	78
78	Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. <i>Lancet Psychiatry,the</i> , 2016 , 3, 350-7	23.3	77
77	Improving genetic prediction by leveraging genetic correlations among human diseases and traits. <i>Nature Communications</i> , 2018 , 9, 989	17.4	76
76	Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems. <i>American Journal of Psychiatry</i> , 2019 , 176, 846-855	11.9	73
75	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. <i>American Journal of Human Genetics</i> , 2018 , 102, 1169-1184	11	73

74	1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. <i>Scientific Reports</i> , 2017 , 7, 45040	4.9	70
73	Prediction of human population responses to toxic compounds by a collaborative competition. <i>Nature Biotechnology</i> , 2015 , 33, 933-40	44.5	70
72	A bias-reducing pathway enrichment analysis of genome-wide association data confirmed association of the MHC region with schizophrenia. <i>Journal of Medical Genetics</i> , 2012 , 49, 96-103	5.8	64
71	Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. <i>Molecular Psychiatry</i> , 2013 , 18, 922-9	15.1	58
70	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. <i>Molecular Psychiatry</i> , 2011 , 16, 1117-29	15.1	58
69	The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. <i>Biological Psychiatry</i> , 2020 , 88, 169-184	7.9	57
68	Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry, 2013, 70, 253-60	14.5	56
67	Estimation of Genetic Correlation via Linkage Disequilibrium Score Regression and Genomic Restricted Maximum Likelihood. <i>American Journal of Human Genetics</i> , 2018 , 102, 1185-1194	11	55
66	Rare copy number variation in treatment-resistant major depressive disorder. <i>Biological Psychiatry</i> , 2014 , 76, 536-41	7.9	54
65	Disruption of a large intergenic noncoding RNA in subjects with neurodevelopmental disabilities. <i>American Journal of Human Genetics</i> , 2012 , 91, 1128-34	11	53
64	Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: a polygenic risk score analysis. <i>PLoS ONE</i> , 2012 , 7, e37852	3.7	53
63	Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history. <i>Schizophrenia Research</i> , 2014 , 154, 48-53	3.6	49
62	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. <i>American Journal of Human Genetics</i> , 2017 , 100, 885-894	11	48
61	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. <i>Genome Medicine</i> , 2017 , 9, 114	14.4	48
60	Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. <i>Human Molecular Genetics</i> , 2013 , 22, 2529-38	5.6	48
59	Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. <i>Molecular Psychiatry</i> , 2016 , 21, 1290-7	15.1	45
58	Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. <i>ELife</i> , 2017 , 6,	8.9	44
57	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. <i>International Journal of Epidemiology</i> , 2015 , 44, 1706-21	7.8	43

(2021-2012)

56	Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. <i>American Journal of Human Genetics</i> , 2012 , 91, 56-72	11	42
55	Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. <i>Molecular Psychiatry</i> , 2020 , 25, 2422-2430	15.1	36
54	Schizophrenia genetic variants are not associated with intelligence. <i>Psychological Medicine</i> , 2013 , 43, 2563-70	6.9	34
53	Revealing complex traits with small molecules and naturally recombinant yeast strains. <i>Chemistry and Biology</i> , 2006 , 13, 319-27		34
52	and Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function. <i>Journal of the American Society of Nephrology: JASN</i> , 2017 , 28, 981-994	12.7	30
51	Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder		28
50	A family-based study of common polygenic variation and risk of schizophrenia. <i>Molecular Psychiatry</i> , 2011 , 16, 887-8	15.1	26
49	Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. <i>Translational Psychiatry</i> , 2015 , 5, e607	8.6	25
48	Genetic variants and functional pathways associated with resilience to Alzheimer disease. <i>Brain</i> , 2020 , 143, 2561-2575	11.2	25
47	Variability in working memory performance explained by epistasis vs polygenic scores in the ZNF804A pathway. <i>JAMA Psychiatry</i> , 2014 , 71, 778-785	14.5	24
46	Genome-wide association study reveals greater polygenic loading for schizophrenia in cases with a family history of illness. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2016 , 171B, 276-89	3.5	23
45	Copy number variation in subjects with major depressive disorder who attempted suicide. <i>PLoS ONE</i> , 2012 , 7, e46315	3.7	22
44	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. <i>Cell Reports</i> , 2020 , 31, 107716	10.6	21
43	Contribution of Rare Copy Number Variants to Bipolar Disorder Risk Is Limited to Schizoaffective Cases. <i>Biological Psychiatry</i> , 2019 , 86, 110-119	7.9	20
42	Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. <i>Schizophrenia Research</i> , 2011 , 131, 43-5	1 ^{3.6}	19
41	Functional annotation of rare structural variation in the human brain. <i>Nature Communications</i> , 2020 , 11, 2990	17.4	18
40	No evidence for rare recessive and compound heterozygous disruptive variants in schizophrenia. <i>European Journal of Human Genetics</i> , 2015 , 23, 555-7	5.3	17
39	A Comparison of Ten Polygenic Score Methods for Psychiatric Disorders Applied Across Multiple Cohorts. <i>Biological Psychiatry</i> , 2021 , 90, 611-620	7.9	17

38	Highly penetrant alterations of a critical region including BDNF in human psychopathology and obesity. <i>Archives of General Psychiatry</i> , 2012 , 69, 1238-46		16
37	Fine-mapping reveals novel alternative splicing of the dopamine transporter. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1434-47	3.5	16
36	No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study. <i>PLoS Genetics</i> , 2016 , 12, e1006343	6	15
35	Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records. <i>Translational Psychiatry</i> , 2018 , 8, 86	8.6	14
34	Genetic classification of populations using supervised learning. PLoS ONE, 2011, 6, e14802	3.7	14
33	Using expression and genotype to predict drug response in yeast. PLoS ONE, 2009, 4, e6907	3.7	14
32	Family-based genetic risk prediction of multifactorial disease. <i>Genome Medicine</i> , 2010 , 2, 2	14.4	13
31	Vaccine-preventable outbreaks: still with us after all these years. <i>Pediatric Annals</i> , 2015 , 44, e76-81	1.3	12
30	Genome-wide association study of over 40,000 bipolar disorder cases provides new insights into the underlying biology		11
29	Clinical laboratory test-wide association scan of polygenic scores identifies biomarkers of complex disease. <i>Genome Medicine</i> , 2021 , 13, 6	14.4	11
28	Mosaic copy number variation in schizophrenia. European Journal of Human Genetics, 2013, 21, 1007-11	5.3	10
27	Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated genes		9
26	Genetic risk for major depressive disorder and loneliness in sex-specific associations with coronary artery disease. <i>Molecular Psychiatry</i> , 2021 , 26, 4254-4264	15.1	9
25	Genetic risk for schizophrenia and autism, social impairment and developmental pathways to psychosis. <i>Translational Psychiatry</i> , 2018 , 8, 204	8.6	9
24	Characterization of Single Gene Copy Number Variants in Schizophrenia. <i>Biological Psychiatry</i> , 2020 , 87, 736-744	7.9	8
23	Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide		7
22	APOE 🛚 -specific associations of VEGF gene family expression with cognitive aging and Alzheimer to disease. <i>Neurobiology of Aging</i> , 2020 , 87, 18-25	5.6	7
21	Co-localization of Conditional eQTL and GWAS Signatures in Schizophrenia		6

Gene expression imputation across multiple brain regions reveals schizophrenia risk throughout development 6 20 Bipolar disorder and a history of suicide attempts with a duplication in 5HTR1A. American Journal of 19 11.9 Psychiatry, 2012, 169, 1213-4 Learning Opportunities for Drug Repositioning via GWAS and PheWAS Findings. AMIA Summits on 18 1.1 3 Translational Science Proceedings, 2018, 2017, 237-246 Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia 17 Functional annotation of rare structural variation in the human brain 16 3 The ExAC Browser: Displaying reference data information from over 60,000 exomes 15 3 Phenotypic signatures in clinical data enable systematic identification of patients for genetic 14 50.5 3 testing. Nature Medicine, 2021, 27, 1097-1104 Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular 13 15.1 Psychiatry, 2021, 26, 5239-5250 Population-based identity-by-descent mapping combined with exome sequencing to detect rare risk variants for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric 12 2 3.5 Genetics, 2019, 180, 223-231 Deep phenotyping predicts Huntington's genotype. Nature Biotechnology, 2016, 34, 823-4 11 44.5 2 Characterisation of age and polarity at onset in bipolar disorder.. British Journal of Psychiatry, 2021, 10 5.4 2 219, 659-669 Characterization of single gene copy number variants in schizophrenia 9 8 Identifying tissues implicated in Anorexia Nervosa using Transcriptomic Imputation 1 Analysis of Genetically Regulated Gene Expression identifies a trauma type specific PTSD gene, SNRNP35 6 Characterization of Age and Polarity at Onset in Bipolar Disorder 1 Expanding cultural and ancestral representation in psychiatric genetic studies. 8.7 Neuropsychopharmacology, **2020**, 45, 1593-1594 Genomics-driven screening for causal determinants of suicide attempt.. Australian and New Zealand 2.6 0 Journal of Psychiatry, 2022, 48674221091499

[S4.3]: Large-scale genetic studies of rare and common variation in schizophrenia risk. International

Journal of Developmental Neuroscience, 2010, 28, 647-647

2.7

VEGF-family brain protein abundance: Associations with Alzheimer's disease pathology and cognitive decline.. *Alzheimers and Dementia*, **2021**, 17 Suppl 3, e052984

1.2

Sex differences in the genetic architecture underlying resilience in AD.. *Alzheimers* and *Dementia*, **2021**, 17 Suppl 3, e055010

1.2