
## Maogang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3527482/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair. Energy Conversion and Management, 2019, 181, 319-330.                                             | 9.2 | 87        |
| 2  | Vapor–Liquid Equilibrium of R1234yf/[HMIM][Tf <sub>2</sub> N] and<br>R1234ze(E)/[HMIM][Tf <sub>2</sub> N] Working Pairs for the Absorption Refrigeration Cycle. Journal of<br>Chemical & Engineering Data, 2016, 61, 3952-3957. | 1.9 | 53        |
| 3  | Vapor–Liquid Equilibrium of Three Hydrofluorocarbons with [HMIM][Tf <sub>2</sub> N]. Journal of<br>Chemical & Engineering Data, 2015, 60, 1354-1361.                                                                            | 1.9 | 52        |
| 4  | Investigation on the condensation process of HFO refrigerants by molecular dynamics simulation.<br>Journal of Molecular Liquids, 2019, 288, 111034.                                                                             | 4.9 | 42        |
| 5  | Solubilities of R-161 and R-143a in 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid<br>Phase Equilibria, 2015, 388, 37-42.                                                                                 | 2.5 | 39        |
| 6  | Vapor-liquid equilibrium and diffusion coefficients of R32 + [HMIM][FEP], R152a + [HMIM][FEP] and<br>R161 + [HMIM][FEP]. Journal of Molecular Liquids, 2018, 253, 28-35.                                                        | 4.9 | 35        |
| 7  | Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach. AlP Advances, 2017, 7, .                                                                               | 1.3 | 33        |
| 8  | Selection and Evaluation of Dry and Isentropic Organic Working Fluids Used in Organic Rankine Cycle<br>Based on the Turning Point on Their Saturated Vapor Curves. Journal of Thermal Science, 2019, 28,<br>643-658.            | 1.9 | 33        |
| 9  | Solubilities of R32, R245fa, R227ea and R236fa in a phosphonium-based ionic liquid. Journal of Molecular Liquids, 2016, 218, 525-530.                                                                                           | 4.9 | 31        |
| 10 | Measurement and correlation of viscosities and densities of methyl dodecanoate and ethyl dodecanoate at elevated pressures. Thermochimica Acta, 2018, 663, 85-92.                                                               | 2.7 | 30        |
| 11 | Thermal Diffusivity and Speed of Sound of Saturated Pentane from Light Scattering. International<br>Journal of Thermophysics, 2014, 35, 1450-1464.                                                                              | 2.1 | 27        |
| 12 | Heat capacities of fatty acid methyl esters from 300 K to 380 K and up to 4.25 MPa. Fuel, 2015, 157, 240-244.                                                                                                                   | 6.4 | 27        |
| 13 | Diffusion coefficients and Henry's constants of hydrofluorocarbons in [HMIM][Tf 2 N], [HMIM][TfO], and [HMIM][BF 4 ]. Journal of Chemical Thermodynamics, 2017, 112, 43-51.                                                     | 2.0 | 27        |
| 14 | Estimating the viscosity of pure refrigerants and their mixtures by free-volume theory. International<br>Journal of Refrigeration, 2015, 54, 55-66.                                                                             | 3.4 | 25        |
| 15 | Molecular dynamics simulation of thermophysical properties and condensation process of R1233zd(E).<br>International Journal of Refrigeration, 2020, 112, 341-347.                                                               | 3.4 | 25        |
| 16 | Gaseous absorption of fluorinated ethanes by ionic liquids. Fluid Phase Equilibria, 2015, 405, 1-6.                                                                                                                             | 2.5 | 23        |
| 17 | Viscosity of oxygenated fuel: A model based on Eyring's absolute rate theory. Fuel, 2019, 241, 218-226.                                                                                                                         | 6.4 | 23        |
| 18 | Measurements and calculations of thermal conductivity for liquid n-octane and n-decane. Fluid Phase<br>Equilibria, 2021, 533, 112940.                                                                                           | 2.5 | 23        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Densities and Viscosities of Ethyl Heptanoate and Ethyl Octanoate at Temperatures from 303 to 353 K<br>and at Pressures up to 15 MPa. Journal of Chemical & Engineering Data, 2017, 62, 2454-2460.               | 1.9 | 22        |
| 20 | Solubilities and diffusivities of R227ea, R236fa and R245fa in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical Thermodynamics, 2018, 123, 158-164.                            | 2.0 | 22        |
| 21 | Estimating the viscosity of ionic liquid at high pressure using Eyring's absolute rate theory. Fluid<br>Phase Equilibria, 2018, 458, 170-176.                                                                    | 2.5 | 22        |
| 22 | Experimental and correlational study of isobaric molar heat capacities of fatty acid esters: Ethyl nonanoate and ethyl dodecanoate. Fluid Phase Equilibria, 2019, 479, 47-51.                                    | 2.5 | 22        |
| 23 | Measurement and modeling of thermal conductivity for short chain methyl esters: Methyl butyrate and methyl caproate. Journal of Chemical Thermodynamics, 2021, 159, 106486.                                      | 2.0 | 22        |
| 24 | Improving the viscosity and density of n-butanol as alternative to gasoline by blending with dimethyl carbonate. Fuel, 2021, 286, 119360.                                                                        | 6.4 | 21        |
| 25 | Isobaric molar heat capacities of 1-ethyl-3-methylimidazolium acetate and 1-hexyl-3-methylimidazolium<br>acetate up to 16ÂMPa. Fluid Phase Equilibria, 2016, 427, 187-193.                                       | 2.5 | 20        |
| 26 | Temperature and pressure dependence of densities and viscosities for binary mixtures of methyl decanoate plus n-heptane. Thermochimica Acta, 2018, 670, 211-218.                                                 | 2.7 | 19        |
| 27 | Thermal conductivity measurements for long-chain n-alkanes at evaluated temperature and pressure:<br>n-dodecane and n-tetradecane. Journal of Chemical Thermodynamics, 2021, 162, 106566.                        | 2.0 | 18        |
| 28 | Solubilities of small hydrocarbons, viscosities of diluted tetraalkylphosphonium<br>bis(2,4,4â€ŧrimethylpentyl) phosphinates. AICHE Journal, 2014, 60, 2607-2612.                                                | 3.6 | 17        |
| 29 | Isobaric heat capacities of ethyl heptanoate and ethyl cinnamate at pressures up to 16.3 MPa. Journal of<br>Chemical Thermodynamics, 2016, 93, 70-74.                                                            | 2.0 | 17        |
| 30 | Prediction of Thermal Conductivity for Guiding Molecular Design of Liquids. ACS Sustainable<br>Chemistry and Engineering, 2020, 8, 6022-6032.                                                                    | 6.7 | 17        |
| 31 | Effects of Liquid Supply Method on Falling-Film Mode Transitions on Horizontal Tubes. Heat Transfer<br>Engineering, 2013, 34, 562-579.                                                                           | 1.9 | 16        |
| 32 | Measurement of isobaric heat capacity of pure water up to supercritical conditions. Journal of<br>Supercritical Fluids, 2015, 100, 1-6.                                                                          | 3.2 | 16        |
| 33 | Speed of Sound in Methyl Caprate, Methyl Laurate, and Methyl Myristate: Measurement by Brillouin<br>Light Scattering and Prediction by Wada's Group Contribution Method. Energy & Fuels, 2016, 30,<br>9502-9509. | 5.1 | 16        |
| 34 | Isobaric molar heat capacities of binary mixtures containing methyl caprate and methyl laurate at pressures up to 16.2 MPa. Thermochimica Acta, 2017, 651, 43-46.                                                | 2.7 | 16        |
| 35 | Prediction of the critical properties of mixtures based on group contribution theory. Journal of<br>Molecular Liquids, 2018, 271, 313-318.                                                                       | 4.9 | 16        |
| 36 | Surface Tension of Aqueous Solutions of Small-Chain Amino and Organic Acids. Journal of Chemical<br>& Engineering Data, 2019, 64, 5049-5056.                                                                     | 1.9 | 16        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Heat Capacities of Fluids: The Performance of Various Equations of State. Journal of Chemical &<br>Engineering Data, 2020, 65, 5654-5676.                                                               | 1.9 | 16        |
| 38 | Mass Diffusion Coefficients of Dimethyl Carbonate in Heptane and in Air at <i>T</i> = (278.15 to 338.15)<br>K. Journal of Chemical & Engineering Data, 2008, 53, 2861-2864.                             | 1.9 | 15        |
| 39 | Unusual Transformation of Polymer Coils in a Mixed Solvent Close to the Critical Point. Physical Review Letters, 2018, 121, 207802.                                                                     | 7.8 | 15        |
| 40 | Isobaric molar heat capacities measurement of binary mixtures containing ethyl laurate and ethanol<br>at high pressures. Journal of Molecular Liquids, 2019, 280, 301-306.                              | 4.9 | 15        |
| 41 | Absorption and separation of CO2/C3H8 and C3H6/C3H8 by ionic liquid: Effect of molar volume. Journal of Natural Gas Science and Engineering, 2018, 58, 266-274.                                         | 4.4 | 14        |
| 42 | Isobaric Molar Heat Capacity of Ethyl Octanoate and Ethyl Decanoate at Pressures up to 24 MPa.<br>Journal of Chemical & Engineering Data, 2018, 63, 2252-2256.                                          | 1.9 | 14        |
| 43 | Determination of Binary Gas Diffusion Coefficients Using Digital Holographic Interferometry. Journal of Chemical & Engineering Data, 2010, 55, 3318-3321.                                               | 1.9 | 13        |
| 44 | Measurement of the Speed of Sound in Hexane and Heptane at Temperatures from (303.15 to 536.15) K<br>and Pressures from (1.0 to 8.5) MPa. Journal of Chemical & Engineering Data, 2016, 61, 701-711.    | 1.9 | 13        |
| 45 | Correlation for viscosities of pure liquids at high pressures. Journal of Molecular Liquids, 2017, 231, 404-410.                                                                                        | 4.9 | 13        |
| 46 | Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar<br>Cubic-Plus-Association Equation of State. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>7602-7619. | 6.7 | 13        |
| 47 | Regulating structure and flow of ionic liquid confined in nanochannel using water and electric field. Journal of Molecular Liquids, 2022, 351, 118612.                                                  | 4.9 | 13        |
| 48 | Thermal conductivity analysis of two-dimensional complex plasma liquids and crystals. Physics of Plasmas, 2020, 27, .                                                                                   | 1.9 | 12        |
| 49 | Modeling heat capacity of saturated hydrocarbon in liquid phase over a wide range of temperature and pressure. Journal of Molecular Liquids, 2020, 319, 114068.                                         | 4.9 | 12        |
| 50 | General models for prediction densities and viscosities of saturated and unsaturated fatty acid esters. Journal of Molecular Liquids, 2021, 341, 117374.                                                | 4.9 | 12        |
| 51 | Experimental Studies of Thermal Conductivity of Three Biodiesel Compounds: Methyl Pentanoate,<br>Methyl Octanoate, and Methyl Decanoate. Journal of Chemical & Engineering Data, 2022, 67, 45-53.       | 1.9 | 12        |
| 52 | Experimental investigation and modeling of thermophysical properties of ethyl decanoate at high temperatures. Fluid Phase Equilibria, 2019, 501, 112274.                                                | 2.5 | 11        |
| 53 | Experimental Study on Isobaric Molar Heat Capacities of a Deep Eutectic Solvent: Choline Chloride +<br>Ethylene Glycol. Journal of Chemical & Engineering Data, 2020, 65, 690-695.                      | 1.9 | 11        |
| 54 | Measurement of the thermal conductivity of the components of biodiesels: Methyl laurate and methyl myristate. Fluid Phase Equilibria, 2022, 556, 113409.                                                | 2.5 | 11        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Isobaric Heat Capacity of Boric Acid Solution. Journal of Chemical & Engineering Data, 2014, 59, 4200-4204.                                                                                                                               | 1.9 | 10        |
| 56 | Mutual diffusion coefficients of ethanolÂ+Ân-heptane and diethyl carbonateÂ+Ân-heptane from 288.15ÂK to<br>318.15ÂK. Journal of Chemical Thermodynamics, 2020, 144, 106089.                                                               | 2.0 | 10        |
| 57 | Measurement of critical properties for binary and ternary mixtures containing potential gasoline additive diethyl carbonate (DEC). Fluid Phase Equilibria, 2018, 471, 17-23.                                                              | 2.5 | 9         |
| 58 | Gaseous Absorption of <i>trans</i> -1-Chloro-3,3,3-trifluoropropene in Three Immidazolium-Based Ionic<br>Liquids. Journal of Chemical & Engineering Data, 2018, 63, 1780-1788.                                                            | 1.9 | 9         |
| 59 | Mesoscopic Diffusion of Poly(ethylene oxide) in Pure and Mixed Solvents. Journal of Physical<br>Chemistry B, 2018, 122, 3454-3464.                                                                                                        | 2.6 | 9         |
| 60 | First law-based thermodynamic analysis on Kalina cycle. Frontiers of Energy and Power Engineering in<br>China, 2008, 2, 145-151.                                                                                                          | 0.4 | 8         |
| 61 | A New Method of Processing Mach–Zehnder Interference Fringe Data in Determination of Diffusion<br>Coefficient. International Journal of Thermophysics, 2009, 30, 1823-1837.                                                               | 2.1 | 8         |
| 62 | Mutual diffusion behavior of short chain alcohols+n-octane mixtures. Thermochimica Acta, 2016, 624,<br>1-7.                                                                                                                               | 2.7 | 8         |
| 63 | A new power/cooling cogeneration system using R1234ze(E)/ionic liquid working fluid. International<br>Journal of Energy Research, 2020, 44, 4703-4716.                                                                                    | 4.5 | 8         |
| 64 | Fouling formed on SS316L tube surface from thermal oxidative degradation of exo<br>-tetrahydrodicyclopentadiene. Applied Thermal Engineering, 2017, 118, 464-470.                                                                         | 6.0 | 7         |
| 65 | A Comprehensive Study on Thermophysical Properties of Carbon Dioxide through the<br>Cubic-Plus-Association and Crossover Cubic-Plus-Association Equations of State. Journal of Chemical<br>& Engineering Data, 2020, 65, 4268-4284.       | 1.9 | 7         |
| 66 | Ultra-accurate thermophysical properties of helium-4 and helium-3 at low density. I. Second pressure and acoustic virial coefficients. Molecular Physics, 2021, 119, e1802525.                                                            | 1.7 | 7         |
| 67 | Unique Arrangement of Atoms Leads to Low Thermal Conductivity: A Comparative Study of Monolayer<br>Mg <sub>2</sub> C. Journal of Physical Chemistry Letters, 2021, 12, 10353-10358.                                                       | 4.6 | 7         |
| 68 | Measurement of the Speed of Sound in Near-Critical and Supercritical <i>n</i> -Heptane at<br>Temperatures from (513.40 to 650.90) K and Pressures from (2.5 to 10.0) MPa. Journal of Chemical &<br>Engineering Data, 2018, 63, 3331-3337. | 1.9 | 6         |
| 69 | Speed of Sound and Derived Properties of Ethyl Nonanoate. Journal of Chemical & Engineering<br>Data, 2019, 64, 3632-3640.                                                                                                                 | 1.9 | 6         |
| 70 | Thermodynamic and Economic Studies of a Combined Cycle for Waste Heat Recovery of Marine Diesel<br>Engine. Journal of Thermal Science, 2022, 31, 417-435.                                                                                 | 1.9 | 6         |
| 71 | Development status and some considerations on Energy Internet construction in Beijing-Tianjin-Hebei<br>region. Heliyon, 2022, 8, e08722.                                                                                                  | 3.2 | 6         |
| 72 | Thermodynamic optimization of lithium chloride-potassium chloride-zinc chloride and lithium<br>chloride-potassium chloride-magnesium chloride for thermal energy storage. Journal of Energy<br>Storage, 2022, 53, 105028.                 | 8.1 | 6         |

| #  | Article                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Data-driven multi-objective molecular design of ionic liquid with high generation efficiency on small dataset. Materials and Design, 2022, 220, 110888. | 7.0 | 6         |

## Mutual Diffusion Coefficients of Diethyl Carbonate and Diethyl Adipate in Heptane at T = (278.15 to) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

| 75 | Measurements of the Speed of Sound in Liquid and Supercritical <i>n</i> -Octane and Isooctane.<br>Journal of Chemical & Engineering Data, 2018, 63, 102-112.                                                                  | 1.9 | 5 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 76 | Densities and Viscosities of Mixtures of Methyl Dodecanoate + Ethyl Octanoate at Pressures up to 15<br>MPa. Journal of Chemical & Engineering Data, 2018, 63, 4085-4094.                                                      | 1.9 | 5 |
| 77 | Measurement of Critical Properties for Binary and Ternary Mixtures Containing n-Butanol and n-Alkane. Journal of Chemical & Engineering Data, 2018, 63, 3956-3965.                                                            | 1.9 | 5 |
| 78 | Measurement of thermal diffusivity for carbon dioxide (CO2) at TÂ= 293.15–406.15â€ <sup>–</sup> K and pressures up to<br>11â€ <sup>–</sup> MPa by dynamic light scattering (DLS). Fluid Phase Equilibria, 2018, 474, 126-130. | 2.5 | 5 |
| 79 | Isothermal titration calorimetry in a 3D-printed microdevice. Biomedical Microdevices, 2019, 21, 96.                                                                                                                          | 2.8 | 5 |
| 80 | General Model Based on Artificial Neural Networks for Estimating the Viscosities of Oxygenated Fuels. ACS Omega, 2019, 4, 16564-16571.                                                                                        | 3.5 | 5 |
| 81 | A new activity coefficient model for the solution of molecular soluteÂ+Âionic liquid. Fluid Phase<br>Equilibria, 2019, 493, 144-152.                                                                                          | 2.5 | 5 |
| 82 | Measurement of critical temperature and critical pressure of tert-butanol and alkane mixtures.<br>Journal of Molecular Liquids, 2020, 302, 112582.                                                                            | 4.9 | 5 |
| 83 | Experimental measurement and prediction of thermal conductivity of fatty acid ethyl esters: ethyl butyrate and ethyl caproate. Fluid Phase Equilibria, 2022, 560, 113507.                                                     | 2.5 | 5 |
| 84 | Thermal Diffusivity of 2-Ethoxy-2-methylpropane (ETBE) and 2-Methoxy-2-methylbutane (TAME) at<br>Temperatures from (293 to 523) K and Pressure up to 10 MPa. Journal of Chemical & Engineering<br>Data, 2017, 62, 893-901.    | 1.9 | 4 |
| 85 | Two-Binary-Interaction-Parameter Model for Molecular Solute + Ionic Liquid Solution. Industrial<br>& Engineering Chemistry Research, 2021, 60, 11490-11501.                                                                   | 3.7 | 4 |
| 86 | Two Crossover Soave–Redlich–Kwong Equations of State with Fully Analytical Crossover Functions<br>for the Thermodynamic Properties of Carbon Dioxide. Industrial & Engineering Chemistry<br>Research, 2021, 60, 15301-15309.  | 3.7 | 4 |
| 87 | Tuning the Molecular Structure and Transport Property of [bmim][Tf2N] Using Electric Field. Journal of Thermal Science, 2022, 31, 1076-1083.                                                                                  | 1.9 | 4 |
| 88 | lsobaric heat capacities of exo-tetrahydrodicyclopentadiene at temperatures from 323ÂK to 523ÂK and<br>pressures up to 6ÂMPa. Fluid Phase Equilibria, 2017, 434, 102-106.                                                     | 2.5 | 3 |
| 89 | Measurement and Correlation of the Solubilities of Oxygen, Nitrogen, and Carbon Dioxide in JP-10.<br>Journal of Chemical & Engineering Data, 2017, 62, 3998-4005.                                                             | 1.9 | 3 |
| 90 | Speed of Sound and Derivative Properties of Ethyl Laurate from Rayleigh–Brillouin Light-Scattering<br>Spectroscopy. Journal of Chemical & Engineering Data, 2020, 65, 3146-3160.                                              | 1.9 | 3 |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Speed of sound for ethanol in vicinity of the critical point from Rayleigh-Brillouin light scattering spectroscopy. Fluid Phase Equilibria, 2020, 515, 112585.                                           | 2.5 | 3         |
| 92  | Speed of sound measurement and mixing-rule evaluation of (n-butanolÂ+Ân-heptane) binary mixtures.<br>Journal of Chemical Thermodynamics, 2022, 172, 106817.                                              | 2.0 | 3         |
| 93  | Measurement of the speed of sound in supercritical n–hexane at temperatures from (509.17–637.99) K<br>and pressures from (3.5–7.5) MPa. Fluid Phase Equilibria, 2019, 497, 97-103.                       | 2.5 | 2         |
| 94  | Speed of Sound Measurement in 1-Methoxy-2-propanol from (306.81 to 648.29) K and up to 10 MPa.<br>Journal of Chemical & Engineering Data, 2019, 64, 337-344.                                             | 1.9 | 2         |
| 95  | Measurement of the speed of sound in n-decane at temperatures from (298.32 to 653.95) K and pressures up to 10.0ÂMPa. Journal of Chemical Thermodynamics, 2020, 148, 106127.                             | 2.0 | 2         |
| 96  | Numerical Study of Flow and Heat Transfer in a Rectangular Channel Partially Filled with Porous<br>Media at the Pore Scale Using Lattice Boltzmann Method. Heat Transfer Engineering, 2022, 43, 818-829. | 1.9 | 2         |
| 97  | Association effect on the density, viscosity and excess properties of fatty acid esterÂ+Âalcohol mixtures: Experiment and modeling. Fuel, 2022, 316, 123425.                                             | 6.4 | 2         |
| 98  | Isobaric Molar Heat Capacities of Binary Mixtures of Diethyl Carbonate and Methyl Caprate at High<br>Pressures. Journal of Chemical & Engineering Data, 2022, 67, 661-668.                               | 1.9 | 2         |
| 99  | Speed of Sound Measurements of 2-Methoxy-2-methylpropane in the Temperature Range of 293.15 and 673.15 K and for Pressures up to 10 MPa. Journal of Chemical & Engineering Data, 2016, 61, 3127-3134.    | 1.9 | 1         |
| 100 | Measurement of the Speed of Sound in Methyl Caprylate from 298.22 to 608.38 K and up to 10 MPa.<br>Journal of Chemical & Engineering Data, 2019, 64, 3617-3623.                                          | 1.9 | 1         |
| 101 | Thermo-Acoustic Properties of (Ethanol + <i>n</i> -Heptane) Binary Mixtures from 293.35 to 433.89 K<br>and up to 5.0 MPa. Journal of Chemical & Engineering Data, 2020, 65, 3893-3905.                   | 1.9 | 1         |
| 102 | Measurement of Thermal Diffusivity of n-Pentane from (293–573) K and up to 10.0 MPa in the<br>Near-Critical and Supercritical Regions. Journal of Chemical & Engineering Data, 0, , .                    | 1.9 | 1         |
| 103 | Measurement of the critical temperature and critical pressure of isopropanol and isobutanol blended with gasoline components. Journal of Supercritical Fluids, 2022, 182, 105536.                        | 3.2 | 1         |
| 104 | Measurement of the speed of sound in near-critical n-dodecane at temperatures from (433 to 679) K<br>and pressures up to 10.0ÂMPa. Journal of Chemical Thermodynamics, 2022, 170, 106768.                | 2.0 | 1         |
| 105 | Speed of Sound and Excess Properties of (Ethanol + Isooctane) Binary System. Journal of Chemical<br>& Engineering Data, 2022, 67, 1428-1437.                                                             | 1.9 | 1         |
| 106 | Measurement of Speed of Sound in Methyl Hexanoate from 297.83 to 588.07 K and up to 10 MPa. Journal of Chemical & Engineering Data, 2019, 64, 5698-5704.                                                 | 1.9 | 0         |
| 107 | Measurement of the speed of sound in supercritical n-pentane at temperatures from (422.69–653.53) K<br>and pressures from (3.5–10.0) MPa. Fluid Phase Equilibria, 2020, 507, 112390.                     | 2.5 | 0         |
| 108 | Dynamic motions and architectural changes in DNA supramolecular aggregates visualized via transmission electron microscopy without liquid cells. Nanoscale, 2021, 13, 15928-15936.                       | 5.6 | 0         |

| #   | Article                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Isobaric molar heat capacities of dimethyl carbonate and alkane binary mixtures at high pressures.<br>Journal of Thermal Analysis and Calorimetry, 0, , 1. | 3.6 | 0         |