Parthena Kotzekidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3527347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From food industry wastes to second generation bioethanol: a review. Reviews in Environmental Science and Biotechnology, 2022, 21, 299-329.	8.1	19
2	Rotary biofilm reactor: A new tool for long-term bioethanol production from non-sterilized beet molasses by Saccharomyces cerevisiae in repeated-batch fermentation. Journal of Cleaner Production, 2020, 257, 120519.	9.3	20
3	Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environmental Science and Pollution Research, 2020, 27, 13105-13113.	5.3	45
4	Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT - Food Science and Technology, 2018, 89, 403-408.	5.2	19
5	Carotene production from waste cooking oil by <i>Blakeslea trispora</i> in a bubble column reactor: The role of oxidative stress. Engineering in Life Sciences, 2017, 17, 775-780.	3.6	10
6	Factors influencing microbial safety of ready-to-eat foods. , 2016, , 33-50.		10
7	Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes. International Journal of Food Microbiology, 2015, 208, 122-130.	4.7	40
8	Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Food Microbiology, 2015, 48, 58-62.	4.2	34
9	From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor. Applied Biochemistry and Biotechnology, 2015, 175, 182-193.	2.9	29
10	Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food and Bioproducts Processing, 2013, 91, 413-420.	3.6	35
11	Microbiological examination of ready-to-eat foods and ready-to-bake frozen pastries from university canteens. Food Microbiology, 2013, 34, 337-343.	4.2	58
12	Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Science, 2013, 95, 458-464.	5.5	29
13	Survey of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 in raw ingredients and ready-to-eat products by commercial real-time PCR kits. Food Microbiology, 2013, 35, 86-91.	4.2	25
14	Application of Response Surface Methodology to Improve Carotene Production from Synthetic Medium by Blakeslea trispora in Submerged Fermentation. Food and Bioprocess Technology, 2012, 5, 1189-1196.	4.7	18
15	Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT - Food Science and Technology, 2011, 44, 54-61.	5.2	65
16	A new medium for spore production of Blakeslea trispora using response surface methodology. World Journal of Microbiology and Biotechnology, 2011, 27, 307-317.	3.6	7
17	AUTOLYSIS OFBlakeslea trisporaDURING CAROTENE PRODUCTION FROM CHEESE WHEY IN AN AIRLIFT REACTOR. Preparative Biochemistry and Biotechnology, 2010, 41, 7-21.	1.9	16
18	Effect of the ratio of (+) and (â^') mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World Journal of Microbiology and Biotechnology, 2010, 26, 2151-2156.	3.6	17

#	Article	IF	CITATIONS
19	Effect of Non-Ionic Surfactants and Beta-Ionone on the Morphology of <i>Blakeslea trispora </i> and Carotenoids Production from Cheese Whey in Submerged Aerobic Growth: A Statistical Approach. Food Biotechnology, 2010, 24, 197-214.	1.5	12
20	INACTIVATION OF VEROCYTOTOXIGENIC <i>ESCHERICHIA COLI</i> AND <i>LISTERIA MONOCYTOGENES</i> CO ULTURED WITH <i>LACTOBACILLUS SAKEI</i> IN A SIMULATED MEAT FERMENTATION MEDIUM. Journal of Food Safety, 2009, 29, 331-347.	2.3	7
21	Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT - Food Science and Technology, 2008, 41, 119-127.	5.2	138
22	Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Applied Microbiology and Biotechnology, 2007, 74, 447-453.	3.6	23
23	Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World Journal of Microbiology and Biotechnology, 2006, 22, 1329-1336.	3.6	108
24	Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology, 2004, 95, 157-168.	4.7	94
25	Production of β-Carotene From Beet Molasses by Blakeslea trispora in Stirred-Tank and Bubble Column Reactors: Development of a Mathematical Modeling. Applied Biochemistry and Biotechnology, 2004, 112, 37-54.	2.9	27
26	Production of Beta-Carotene from Synthetic Medium by Blakeslea trispora in Fed-batch Culture. Food Biotechnology, 2004, 18, 343-361.	1.5	0
27	Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Science, 2003, 65, 859-867.	5.5	287
28	OPTIMIZATION OF β-CAROTENE PRODUCTION FROM SYNTHETIC MEDIUM BY BLAKESLEA TRISPORA IN A STIRRED TANK REACTOR AND RELATIONSHIP BETWEEN MORPHOLOGICAL CHANGES AND PIGMENT FORMATION. Food Biotechnology, 2002, 16, 167-187.	1.5	15
29	Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochemical Engineering Journal, 2002, 10, 123-135.	3.6	97
30	Control of Listeria monocytogenes by low-dose irradiation in combination with refrigeration in the soft whey cheese â€~Anthotyros'. Food Microbiology, 2002, 19, 117-126.	4.2	48
31	Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiology, 2002, 19, 441-449.	4.2	143
32	Optimization of β-Carotene Production from Synthetic Medium by Blakeslea trispora: A Mathematical Modeling. Applied Biochemistry and Biotechnology, 2002, 101, 153-176.	2.9	35
33	Microbial and sensory changes in vacuum-packed frankfurter-type sausage byLactobacillus alimentariusand fate of inoculatedSalmonella enteritidis. Food Microbiology, 1998, 15, 101-111.	4.2	19
34	Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 1998, 22, 199-204.	3.2	79
35	Microbial Stability and Fate of Salmonella Enteritidis in Halva, a Low-Moisture Confection. Journal of Food Protection, 1998, 61, 181-185.	1.7	62
36	Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. Journal of Food Science, 1997, 62, 410-412.	3.1	68

Parthena Kotzekidou

#	Article	IF	CITATIONS
37	Identification of yeasts from black olives in rapid system microtitre plates. Food Microbiology, 1997, 14, 609-616.	4.2	35
38	Pretreatment of date syrup to increase citric acid production. Enzyme and Microbial Technology, 1997, 21, 273-276.	3.2	61
39	Effect of protective cultures and packaging film permeability on shelf-life of sliced vacuum-packed cooked ham. Meat Science, 1996, 42, 333-345.	5.5	88
40	A microtitre tray procedure for a simplified identification ofBacillusspp. in spoiled canned foods. Food Microbiology, 1996, 13, 35-40.	4.2	3
41	Continuous production of lactic acid from deproteinized whey by coimmobilizedlactobacillus caseiandlactococcus lactiscells in a packedâ€bed reactor. Food Biotechnology, 1996, 10, 231-242.	1.5	29
42	Identification of Staphylococci and Micrococci Isolated from an Intermediate Moisture Meat Product. Journal of Food Science, 1992, 57, 249-251.	3.1	16
43	Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme and Microbial Technology, 1991, 13, 33-38.	3.2	42
44	Production of polygalacturonase byByssochlamys fulva. Journal of Industrial Microbiology, 1991, 7, 53-56.	0.9	9
45	Influence of some trace metals and stimulants on citric acid production from brewery wastes by Aspergillus niger. Enzyme and Microbial Technology, 1987, 9, 291-294.	3.2	34
46	Fermentation Characteristics of Lactobacilli in Okra (Hibiscus esculentus) Juice. Journal of Food Science, 1987, 52, 487-488.	3.1	2
47	Production of Citric Acid from Brewery Wastes by Surface Fermentation Using Aspergillus niger. Journal of Food Science, 1986, 51, 225-228.	3.1	33

48 Characterization and Distribution of Lactobacilli during Lactic Fermentation of Okra (Hibiscus) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 302