Parthena Kotzekidou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3527347/publications.pdf

Version: 2024-02-01

48 papers

2,115 citations

218677 26 h-index 233421 45 g-index

49 all docs

49 docs citations

49 times ranked 2119 citing authors

#	Article	IF	CITATIONS
1	Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Science, 2003, 65, 859-867.	5.5	287
2	Characterization of Micrococcaceae isolated from dry fermented sausage. Food Microbiology, 2002, 19, 441-449.	4.2	143
3	Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT - Food Science and Technology, 2008, 41, 119-127.	5.2	138
4	Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World Journal of Microbiology and Biotechnology, 2006, 22, 1329-1336.	3.6	108
5	Effect of the aeration rate and agitation speed on \hat{l}^2 -carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochemical Engineering Journal, 2002, 10, 123-135.	3.6	97
6	Application of central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology, 2004, 95, 157-168.	4.7	94
7	Effect of protective cultures and packaging film permeability on shelf-life of sliced vacuum-packed cooked ham. Meat Science, 1996, 42, 333-345.	5.5	88
8	Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 1998, 22, 199-204.	3.2	79
9	Heat resistance of Byssochlamys nivea, Byssochlamys fulva and Neosartorya fischeri isolated from canned tomato paste. Journal of Food Science, 1997, 62, 410-412.	3.1	68
10	Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT - Food Science and Technology, 2011, 44, 54-61.	5. 2	65
11	Microbial Stability and Fate of Salmonella Enteritidis in Halva, a Low-Moisture Confection. Journal of Food Protection, 1998, 61, 181-185.	1.7	62
12	Pretreatment of date syrup to increase citric acid production. Enzyme and Microbial Technology, 1997, 21, 273-276.	3.2	61
13	Microbiological examination of ready-to-eat foods and ready-to-bake frozen pastries from university canteens. Food Microbiology, 2013, 34, 337-343.	4.2	58
14	Control of Listeria monocytogenes by low-dose irradiation in combination with refrigeration in the soft whey cheese $\hat{a} \in Anthotyros \hat{a} \in M$. Food Microbiology, 2002, 19, 117-126.	4.2	48
15	Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environmental Science and Pollution Research, 2020, 27, 13105-13113.	5.3	45
16	Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme and Microbial Technology, 1991, 13, 33-38.	3.2	42
17	Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes. International Journal of Food Microbiology, 2015, 208, 122-130.	4.7	40
18	Identification of yeasts from black olives in rapid system microtitre plates. Food Microbiology, 1997, 14, 609-616.	4.2	35

#	Article	IF	CITATIONS
19	Optimization of Î ² -Carotene Production from Synthetic Medium by Blakeslea trispora: A Mathematical Modeling. Applied Biochemistry and Biotechnology, 2002, 101, 153-176.	2.9	35
20	Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food and Bioproducts Processing, 2013, 91, 413-420.	3.6	35
21	Influence of some trace metals and stimulants on citric acid production from brewery wastes by Aspergillus niger. Enzyme and Microbial Technology, 1987, 9, 291-294.	3.2	34
22	Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Food Microbiology, 2015, 48, 58-62.	4.2	34
23	Production of Citric Acid from Brewery Wastes by Surface Fermentation Using Aspergillus niger. Journal of Food Science, 1986, 51, 225-228.	3.1	33
24	Continuous production of lactic acid from deproteinized whey by coimmobilizedlactobacillus caseiandlactococcus lactiscells in a packedâ€bed reactor. Food Biotechnology, 1996, 10, 231-242.	1.5	29
25	Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Science, 2013, 95, 458-464.	5.5	29
26	From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor. Applied Biochemistry and Biotechnology, 2015, 175, 182-193.	2.9	29
27	Production of Î ² -Carotene From Beet Molasses by Blakeslea trispora in Stirred-Tank and Bubble Column Reactors: Development of a Mathematical Modeling. Applied Biochemistry and Biotechnology, 2004, 112, 37-54.	2.9	27
28	Survey of Listeria monocytogenes, Salmonella spp. and Escherichia coli O157:H7 in raw ingredients and ready-to-eat products by commercial real-time PCR kits. Food Microbiology, 2013, 35, 86-91.	4.2	25
29	Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Applied Microbiology and Biotechnology, 2007, 74, 447-453.	3.6	23
30	Rotary biofilm reactor: A new tool for long-term bioethanol production from non-sterilized beet molasses by Saccharomyces cerevisiae in repeated-batch fermentation. Journal of Cleaner Production, 2020, 257, 120519.	9.3	20
31	Microbial and sensory changes in vacuum-packed frankfurter-type sausage byLactobacillus alimentariusand fate of inoculatedSalmonella enteritidis. Food Microbiology, 1998, 15, 101-111.	4.2	19
32	Effect of starter cultures on fermentation of naturally and alkali-treated cv. Conservolea green olives. LWT - Food Science and Technology, 2018, 89, 403-408.	5.2	19
33	From food industry wastes to second generation bioethanol: a review. Reviews in Environmental Science and Biotechnology, 2022, 21, 299-329.	8.1	19
34	Application of Response Surface Methodology to Improve Carotene Production from Synthetic Medium by Blakeslea trispora in Submerged Fermentation. Food and Bioprocess Technology, 2012, 5, 1189-1196.	4.7	18
35	Effect of the ratio of (+) and (â^') mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World Journal of Microbiology and Biotechnology, 2010, 26, 2151-2156.	3.6	17
36	Identification of Staphylococci and Micrococci Isolated from an Intermediate Moisture Meat Product. Journal of Food Science, 1992, 57, 249-251.	3.1	16

#	Article	IF	CITATIONS
37	AUTOLYSIS OFBlakeslea trisporaDURING CAROTENE PRODUCTION FROM CHEESE WHEY IN AN AIRLIFT REACTOR. Preparative Biochemistry and Biotechnology, 2010, 41, 7-21.	1.9	16
38	OPTIMIZATION OF \hat{i}^2 -CAROTENE PRODUCTION FROM SYNTHETIC MEDIUM BY BLAKESLEA TRISPORA IN A STIRRED TANK REACTOR AND RELATIONSHIP BETWEEN MORPHOLOGICAL CHANGES AND PIGMENT FORMATION. Food Biotechnology, 2002, 16, 167-187.	1.5	15
39	Effect of Non-Ionic Surfactants and Beta-Ionone on the Morphology of <i>Blakeslea trispora </i> and Carotenoids Production from Cheese Whey in Submerged Aerobic Growth: A Statistical Approach. Food Biotechnology, 2010, 24, 197-214.	1.5	12
40	Factors influencing microbial safety of ready-to-eat foods. , 2016, , 33-50.		10
41	Carotene production from waste cooking oil by <i>Blakeslea trispora</i> in a bubble column reactor: The role of oxidative stress. Engineering in Life Sciences, 2017, 17, 775-780.	3.6	10
42	Production of polygalacturonase byByssochlamys fulva. Journal of Industrial Microbiology, 1991, 7, 53-56.	0.9	9
43	INACTIVATION OF VEROCYTOTOXIGENIC <i>i>ESCHERICHIA COLI</i> i>AND <i>LISTERIA MONOCYTOGENES</i> CO ULTURED WITH <i>LACTOBACILLUS SAKEI</i> i>IN A SIMULATED MEAT FERMENTATION MEDIUM. Journal of Food Safety, 2009, 29, 331-347.	2.3	7
44	A new medium for spore production of Blakeslea trispora using response surface methodology. World Journal of Microbiology and Biotechnology, 2011, 27, 307-317.	3.6	7
45	Characterization and Distribution of Lactobacilli during Lactic Fermentation of Okra (Hibiscus) Tj ETQq1 1 0.7843	31 <u>4 rg</u> BT /	Oyerlock 10
46	A microtitre tray procedure for a simplified identification ofBacillusspp. in spoiled canned foods. Food Microbiology, 1996, 13, 35-40.	4.2	3
47	Fermentation Characteristics of Lactobacilli in Okra (Hibiscus esculentus) Juice. Journal of Food Science, 1987, 52, 487-488.	3.1	2
48	Production of Beta-Carotene from Synthetic Medium by Blakeslea trispora in Fed-batch Culture. Food Biotechnology, 2004, 18, 343-361.	1.5	0