
S I S Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive apprenticeship and T-shaped instructional design in computational fluid mechanics: Student perspectives on learning. International Journal of Mechanical Engineering Education, 2022, 50, 51-77.	1.0	2
2	Implementation and Comparison of Non-Newtonian Viscosity Models in Hemodynamic Simulations of Patient Coronary Arteries. Advanced Structured Materials, 2022, , 403-428.	0.5	1
3	Modelling human liver microphysiology on a chip through a finite element based design approach. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3445.	2.1	3
4	Role of the left coronary artery geometry configuration in atherosusceptibility: CFD simulations considering sPTT model for blood. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1488-1503.	1.6	4
5	FSI modeling on the effect of artery-aneurysm thickness and coil embolization in patient cases. Computer Methods and Programs in Biomedicine, 2021, 206, 106148.	4.7	8
6	The impact of non-linear viscoelastic property of blood in right coronary arteries hemodynamics —ÂA numerical implementation. International Journal of Non-Linear Mechanics, 2020, 123, 103477.	2.6	22
7	WSS Descriptors in a Patient RCA Taking into Account the Non-linear Viscoelasticity of Blood. Advanced Structured Materials, 2020, , 141-152.	0.5	5
8	Non-Linear or Quasi-Linear Viscoelastic Property of Blood for Hemodynamic Simulations. Advanced Structured Materials, 2020, , 127-139.	0.5	6
9	The Impact of the Right Coronary Artery Geometric Parameters on Hemodynamic Performance. Cardiovascular Engineering and Technology, 2019, 10, 257-270.	1.6	26
10	Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Medical and Biological Engineering and Computing, 2019, 57, 715-729.	2.8	37
11	Geometry Reconstruction of a Patient-Specific Right Coronary Artery with Atherosclerotic Plaque for CFD Study. Lecture Notes in Computational Vision and Biomechanics, 2019, , 531-539.	0.5	0
12	Numerical study on the hemodynamics of patientâ€specific carotid bifurcation using a new mesh approach. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2972.	2.1	4
13	Patient-Specific Study of a Stenosed Carotid Artery Bifurcation Using Fluid–Structure Interactive Simulation. Lecture Notes in Computational Vision and Biomechanics, 2018, , 495-503.	0.5	3
14	Link between deviations from Murray's Law and occurrence of low wall shear stress regions in the left coronary artery. Journal of Theoretical Biology, 2016, 402, 89-99.	1.7	14
15	Numerical study of wall shear stress-based descriptors in the human left coronary artery. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1443-1455.	1.6	35
16	Membrane Characterization Based on PEG Rejection and CFD Analysis. Separation Science and Technology, 2015, 50, 1823-1834.	2.5	2
17	Blood Analog Fluid Flow in Vessels with Stenosis: Development of an Openfoam Code to Simulate Pulsatile Flow and Elasticity of the Fluid. APCBEE Procedia, 2013, 7, 73-79.	0.5	7
18	μPIV Analysis and Numerical Simulation of the Flow in Mili-scale Channels Developed for Studies in Hemodynamics. APCBEE Procedia, 2013, 7, 132-137.	0.5	2

S I S Pinto

#	Article	IF	CITATIONS
19	Numerical study of the fractionation of two macromolecules with similar MW in a hybrid cell with electrically charged membranes. Desalination, 2013, 317, 95-107.	8.2	0
20	The accuracy of the stagnant film equation in the study of electrophoretic migration of solutes near an ultrafiltration membrane—a numerical study. Desalination and Water Treatment, 2013, 51, 7509-7522.	1.0	1
21	Membrane Formation in Micro-Channels by Phase Inversion. Procedia Engineering, 2012, 44, 1504-1506.	1.2	0
22	New Separation Hybrid Membrane Cells Applied to Ultrafiltration Processes. Procedia Engineering, 2012, 44, 2027-2029.	1.2	0
23	A Numerical Study of the Apparent Selectivity in the Fractionation of Two Macromolecules by Ultrafiltration. Separation Science and Technology, 2012, 47, 936-949.	2.5	4
24	The Effect of Variable Transport Properties in the Separation of Two Macromolecules by Differential Diffusivity in a Hybrid Membrane Cell – A CFD Study. Separation Science and Technology, 2011, 46, 1685-1698.	2.5	3
25	Interaction between the electric and concentration fields in the fractionation of two macromolecules using a Hybrid Membrane Cell – CFD study. Desalination and Water Treatment, 2011, 35, 209-221.	1.0	3
26	Numerical study of the effect of a charged membrane in the separation of electrically charged components. Desalination and Water Treatment, 2010, 14, 201-207.	1.0	3
27	Use of Hybrid Membrane Cells To Improve the Apparent Selectivity in the Fractionation of Two Components: Computational Fluid Dynamics Study. Industrial & Engineering Chemistry Research, 2010, 49, 9978-9987.	3.7	8
28	A new membrane fractionation process based on the combination of hybrid membrane cells and differential diffusion of two solutes. Desalination, 2009, 241, 372-387.	8.2	8