Jintai Lin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3526554/jintai-lin-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 5,427 38 73 g-index

118 6,892 9.1 5.74 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Sulfur emissions from consumption by developed and developing countries produce comparable climate impacts. <i>Nature Geoscience</i> , 2022 , 15, 184-189	18.3	2
90	Inequality in historical transboundary anthropogenic PM2.5 health impacts. <i>Science Bulletin</i> , 2021 , 67, 437-437	10.6	1
89	Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model. <i>Geoscientific Model Development</i> , 2021 , 14, 5977-5997	6.3	O
88	Effectiveness of emission control in reducing PM_{2.5} pollution in central China during winter haze episodes under various potential synoptic controls. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3143-3162	6.8	5
87	Source sector and fuel contributions to ambient PM and attributable mortality across multiple spatial scales. <i>Nature Communications</i> , 2021 , 12, 3594	17.4	31
86	Impact of Illtra low emissionItechnology of coal-fired power on PM2.5 pollution in the Jing-Jin-Ji Region. <i>Frontiers in Energy</i> , 2021 , 15, 235-239	2.6	1
85	On the local anthropogenic source diversities and transboundary transport for urban agglomeration ozone mitigation. <i>Atmospheric Environment</i> , 2021 , 245, 118005	5.3	6
84	The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. <i>Nature Communications</i> , 2021 , 12, 5021	17.4	17
83	Effect of springtime thermal forcing over Tibetan Plateau on summertime ozone in Central China during the period 1950\(\mathbb{\textit{0}}\)019. Atmospheric Research, 2021, 261, 105735	5.4	O
82	Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 18351-18374	6.8	3
81	Ship emission of nitrous acid (HONO) and its impacts on the marine atmospheric oxidation chemistry. <i>Science of the Total Environment</i> , 2020 , 735, 139355	10.2	8
80	The impact of secondary inorganic aerosol emissions change on surface air temperature in the Northern Hemisphere. <i>Theoretical and Applied Climatology</i> , 2020 , 141, 857-868	3	1
79	Global high-resolution emissions of soil NO, sea salt aerosols, and biogenic volatile organic compounds. <i>Scientific Data</i> , 2020 , 7, 148	8.2	13
78	Effect of changing NO_{<i>x</i>} lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO₂ columns over China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 1483-1495	6.8	71
77	Stratospheric Ozone-induced Cloud Radiative Effects on Antarctic Sea Ice. <i>Advances in Atmospheric Sciences</i> , 2020 , 37, 505-514	2.9	3
76	A new TROPOMI product for tropospheric NO₂ columns over East Asia with explicit aerosol corrections. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 4247-4259	4	21
75	Retrieval of surface PM2.5 mass concentrations over North China using visibility measurements and GEOS-Chem simulations. <i>Atmospheric Environment</i> , 2020 , 222, 117121	5.3	4

(2019-2020)

74	Winners and losers of the Sino DS trade war from economic and environmental perspectives. <i>Environmental Research Letters</i> , 2020 , 15, 094032	6.2	9
73	Satellite-based estimates of decline and rebound in China's CO emissions during COVID-19 pandemic. <i>Science Advances</i> , 2020 , 6,	14.3	58
72	New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, E1-E22	6.1	81
71	Environmental taxation and regional inequality in China. <i>Science Bulletin</i> , 2019 , 64, 1691-1699	10.6	19
7°	Updated Hourly Emissions Factors for Chinese Power Plants Showing the Impact of Widespread Ultralow Emissions Technology Deployment. <i>Environmental Science & Environmental Sc</i>	5 ¹ 78 ³	39
69	Chinese blue days: a novel index and spatio-temporal variations. <i>Environmental Research Letters</i> , 2019 , 14, 074026	6.2	8
68	Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 4643-4657	4	49
67	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem version 9-02. <i>Geoscientific Model Development</i> , 2019 , 12, 111-130	6.3	11
66	Trend reversal from high-to-low and from rural-to-urban ozone concentrations over Europe. <i>Atmospheric Environment</i> , 2019 , 213, 25-36	5.3	24
65	Fugitive Road Dust PM Emissions and Their Potential Health Impacts. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 8455-8465	10.3	44
64	Clean air for some: Unintended spillover effects of regional air pollution policies. <i>Science Advances</i> , 2019 , 5, eaav4707	14.3	80
63	Spatiotemporal dynamics of CO2 emissions from central heating supply in the North China Plain over 2012 2016 due to natural gas usage. <i>Applied Energy</i> , 2019 , 241, 245-256	10.7	16
62	Air pollution exposure associates with increased risk of neonatal jaundice. <i>Nature Communications</i> , 2019 , 10, 3741	17.4	20
61	Effect of changing NO_{<i>x</i>} lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO₂ columns over China 2019 ,		3
60	Exploring 2016 2 017 surface ozone pollution over China: source contributions and meteorological influences. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8339-8361	6.8	127
59	Air pollution-induced missed abortion risk for pregnancies. <i>Nature Sustainability</i> , 2019 , 2, 1011-1017	22.1	25
58	Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 1455-1469	6.8	45
57	High-resolution (0.05🖺 🛘 0.05៤) NO_{<i>x</i>} emissions in the Yangtze River Delta inferred from OMI. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12835-12856	6.8	20

56	Carbon and health implications of trade restrictions. <i>Nature Communications</i> , 2019 , 10, 4947	17.4	22
55	Socioeconomic and atmospheric factors affecting aerosol radiative forcing: Production-based versus consumption-based perspective. <i>Atmospheric Environment</i> , 2019 , 200, 197-207	5.3	8
54	Ozone trends over the United States at different times of day. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 1185-1202	6.8	25
53	Spatiotemporal variability of NO₂ and PM_{2.5} over Eastern China: observational and model analyses with a novel statistical method 2018 ,		1
52	From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation. <i>Applied Energy</i> , 2018 , 211, 549-567	10.7	20
51	Global tropospheric effects of aromatic chemistry with the SAPRC-11 mechanism implemented in GEOS-Chem 2018 ,		1
50	Spatiotemporal variability of NO₂ and PM_{2.5} over Eastern China: observational and model analyses with a novel statistical method. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12933-12952	6.8	32
49	Foreign and domestic contributions to springtime ozone over China. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11447-11469	6.8	41
48	Analysis of European ozone trends in the period 1995\(\textit{\textit{2014}}. \textit{Atmospheric Chemistry and Physics}, \) 2018 , 18, 5589-5605	6.8	52
47	City-level climate change mitigation in China. <i>Science Advances</i> , 2018 , 4, eaaq0390	14.3	168
47 46	City-level climate change mitigation in China. <i>Science Advances</i> , 2018 , 4, eaaq0390 Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709	14.3 50.4	168 501
	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> ,		
46	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709		501
46 45	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709 Effects of atmospheric transport and trade on air pollution mortality in China 2017 , Effects of atmospheric transport and trade on air pollution mortality in China. <i>Atmospheric</i>	50.4	501
46 45 44	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709 Effects of atmospheric transport and trade on air pollution mortality in China 2017 , Effects of atmospheric transport and trade on air pollution mortality in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10367-10381 Impact of spatial proxies on the representation of bottom-up emission inventories: A	50.4	501
46 45 44 43	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709 Effects of atmospheric transport and trade on air pollution mortality in China 2017 , Effects of atmospheric transport and trade on air pollution mortality in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10367-10381 Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4131-4145 Structural uncertainty in air mass factor calculation for NO₂ and HCHO	50.4 6.8 6.8	501 2 43 42
46 45 44 43 42	Transboundary health impacts of transported global air pollution and international trade. <i>Nature</i> , 2017 , 543, 705-709 Effects of atmospheric transport and trade on air pollution mortality in China 2017 , Effects of atmospheric transport and trade on air pollution mortality in China. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 10367-10381 Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 4131-4145 Structural uncertainty in air mass factor calculation for NO₂ and HCHO satellite retrievals. <i>Atmospheric Measurement Techniques</i> , 2017 , 10, 759-782	50.4 6.8 6.8	501 2 43 42 91

38	Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis 2016 ,		1
37	Environment-economy tradeoff for Beijing⊞ianjin⊞ebei⊠ exports. <i>Applied Energy</i> , 2016 , 184, 926-935	10.7	47
36	Spatio-temporal variability of aerosols over East China inferred by merged visibility-GEOS-Chem aerosol optical depth. <i>Atmospheric Environment</i> , 2016 , 132, 111-122	5.3	15
35	Global climate forcing of aerosols embodied in international trade. <i>Nature Geoscience</i> , 2016 , 9, 790-794	18.3	57
34	Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. <i>Remote Sensing of Environment</i> , 2015 , 166, 262-270	13.2	162
33	Revealing the hidden health costs embodied in Chinese exports. <i>Environmental Science & Environmental </i>	10.3	68
32	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. <i>Nature</i> , 2015 , 524, 335-8	50.4	804
31	Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 5443-5456	6.8	105
30	Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 99-112	6.8	17
29	Influence of aerosols and surface reflectance on satellite NO₂ retrieval: seasonal and spatial characteristics and implications for NO_{<i>x</i>} emission constraints. <i>Atmospheric Chemistry and</i>	6.8	61
28	China's international trade and air pollution in the United States. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 1736-41	11.5	302
27	Clear-sky aerosol optical depth over East China estimated from visibility measurements and chemical transport modeling. <i>Atmospheric Environment</i> , 2014 , 95, 258-267	5.3	41
26	Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 1441-1461	6.8	130
25	Tropospheric carbon monoxide over the Pacific during HIPPO: two-way coupled simulation of GEOS-Chem and its multiple nested models. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 12649-12663	6.8	21
24	Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 6315-6327	6.8	28
23	Reply to Lopez et al.: Consumption-based accounting helps mitigate global air pollution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2631	11.5	22
22	Trend and Interannual Variability of Chinese Air Pollution since 2000 in Association with Socioeconomic Development: A Brief Overview. <i>Atmospheric and Oceanic Science Letters</i> , 2013 , 6, 84-89	1.4	24
21	Modeling uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based inverse modeling of nitrogen oxides emissions. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 12255-12275	6.8	66

20	Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 2881-2898	6.8	90
19	Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 3137-3157	6.8	393
18	Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese economic downturn. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 8171-8188	6.8	102
17	Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control. <i>Environmental Science & Environmental Science &</i>	10.3	116
16	Potential effects of climate and emissions changes on surface ozone in the Chicago area. <i>Journal of Great Lakes Research</i> , 2010 , 36, 59-64	3	11
15	Constraint of anthropogenic NO_x emissions in China from different sectors: a new methodology using multiple satellite retrievals. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 63-	7 6 .8	152
14	Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. <i>Atmospheric Environment</i> , 2010 , 44, 1726-1739	5.3	174
13	A Preliminary Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone Concentrations. <i>Bulletin of the American Meteorological Society</i> , 2009 , 90, 1843-1864	6.1	153
12	Explicit calculation of indirect global warming potentials for halons using atmospheric models. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 8719-8733	6.8	7
11	Global model simulation of summertime U.S. ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions. <i>Atmospheric Environment</i> , 2008 , 42, 8470-8483	5.3	68
10	Impacts of long-range transport of global pollutants and precursor gases on U.S. air quality under future climatic conditions. <i>Journal of Geophysical Research</i> , 2008 , 113,		18
9	Effects of Future Climate and Biogenic Emissions Changes on Surface Ozone over the United States and China. <i>Journal of Applied Meteorology and Climatology</i> , 2008 , 47, 1888-1909	2.7	53
8	Sensitivity of future ozone concentrations in the northeast USA to regional climate change. <i>Mitigation and Adaptation Strategies for Global Change</i> , 2008 , 13, 597-606	3.9	24
7	Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences. <i>Environmental Pollution</i> , 2007 , 150, 65-84	9.3	62
6	Tropospheric carbon monoxide over the Pacific during HIPPO: two-way coupled simulation of GEOS-Chem and its multiple nested models		1
5	Influence of aerosols and surface reflectance on satellite NO ₂ retrieval: seasonal and spatial characteristics and implications for NO _{<i>x</i>} emission constraints		4
4	Rapid growth in nitrogen dioxide pollution over Western China, 2005\(\textit{\textit{2005}\textit{2013}} \)		6
3	Grid-Stretching Capability for the GEOS-Chem 13.0.0 Atmospheric Chemistry Model		3

LIST OF PUBLICATIONS

Evaluation of county-level poverty alleviation progress by deep learning and satellite observations.

Big Earth Data,1-17

4.1 1

Supplementary material to "Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models"

2