
Liang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 2006, 59, 1114-1128.	1.2	851
2	Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology (United Kingdom), 2007, 153, 2083-2092.	0.7	411
3	Open-Source Genomic Analysis of Shiga-Toxin–Producing <i>E. coli</i> O104:H4. New England Journal of Medicine, 2011, 365, 718-724.	13.9	392
4	Roles of type IV pili, flagellumâ€mediated motility and extracellular DNA in the formation of mature multicellular structures in <i>Pseudomonas aeruginosa</i> biofilms. Environmental Microbiology, 2008, 10, 2331-2343.	1.8	345
5	Effects of Antibiotics on Quorum Sensing in <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 3648-3663.	1.4	316
6	Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology (United Kingdom), 2007, 153, 1318-1328.	0.7	309
7	Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications, 2014, 5, 4462.	5.8	294
8	An update on <i>Pseudomonas aeruginosa</i> biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology, 2010, 59, 253-268.	2.7	288
9	Interspecies signalling via the <i>Stenotrophomonas maltophilia</i> diffusible signal factor influences biofilm formation and polymyxin tolerance in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2008, 68, 75-86.	1.2	213
10	Characterization of starvationâ€induced dispersion in <i>Pseudomonas putida</i> biofilms: genetic elements and molecular mechanisms. Molecular Microbiology, 2010, 75, 815-826.	1.2	208
11	Computer-Aided Identification of Recognized Drugs as <i>Pseudomonas aeruginosa</i> Quorum-Sensing Inhibitors. Antimicrobial Agents and Chemotherapy, 2009, 53, 2432-2443.	1.4	199
12	Distinct roles of extracellular polymeric substances in <i>Pseudomonas aeruginosa</i> biofilm development. Environmental Microbiology, 2011, 13, 1705-1717.	1.8	196
13	Colistinâ€Tobramycin Combinations Are Superior to Monotherapy Concerning the Killing of Biofilm <i>Pseudomonas aeruginosa</i> . Journal of Infectious Diseases, 2010, 202, 1585-1592.	1.9	181
14	Combating biofilms. FEMS Immunology and Medical Microbiology, 2012, 65, 146-157.	2.7	163
15	Current understanding of multiâ€species biofilms. International Journal of Oral Science, 2011, 3, 74-81.	3.6	162
16	Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Research, 2013, 47, 3081-3092.	5.3	161
17	Pyoverdine and PQS mediated subpopulation interactions involved in <i>Pseudomonas aeruginosa</i> biofilm formation. Molecular Microbiology, 2009, 74, 1380-1392.	1.2	146
18	Dynamic Remodeling of Microbial Biofilms by Functionally Distinct Exopolysaccharides. MBio, 2014, 5, e01536-14.	1.8	142

#	Article	IF	CITATIONS
19	Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms. Nature Communications, 2016, 7, 10750.	5.8	137
20	PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Research, 2015, 25, 1352-1367.	5.7	123
21	Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology (United Kingdom), 2009, 155, 2148-2156.	0.7	115
22	Identification of Five Structurally Unrelated Quorum-Sensing Inhibitors of Pseudomonas aeruginosa from a Natural-Derivative Database. Antimicrobial Agents and Chemotherapy, 2013, 57, 5629-5641.	1.4	113
23	Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement. Nano Letters, 2018, 18, 4180-4187.	4.5	113
24	Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. Npj Biofilms and Microbiomes, 2017, 3, 23.	2.9	109
25	HDâ€GYP domain proteins regulate biofilm formation and virulence in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2009, 11, 1126-1136.	1.8	103
26	Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the United States of America, 2019, 116, 21274-21284.	3.3	102
27	Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23299-23308.	3.3	99
28	Disulfide Bond-Containing Ajoene Analogues As Novel Quorum Sensing Inhibitors of <i>Pseudomonas aeruginosa</i> . Journal of Medicinal Chemistry, 2017, 60, 215-227.	2.9	98
29	Bis-(3′-5′)-Cyclic Dimeric GMP Regulates Antimicrobial Peptide Resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2013, 57, 2066-2075.	1.4	93
30	Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. Journal of Investigative Dermatology, 2018, 138, 1137-1145.	0.3	90
31	In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome, 2015, 3, 38.	4.9	87
32	Emerging frontiers in detection and control of bacterial biofilms. Current Opinion in Biotechnology, 2014, 26, 1-6.	3.3	83
33	Ribosome protection by antibiotic resistance ATP-binding cassette protein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5157-5162.	3.3	83
34	Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11. Journal of the American Chemical Society, 2016, 138, 402-407.	6.6	82
35	Pattern differentiation in co-culture biofilms formed by <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> . FEMS Immunology and Medical Microbiology, 2011, 62, 339-347.	2.7	79
36	Effects of ginseng on <i>Pseudomonas aeruginosa</i> motility and biofilm formation. FEMS Immunology and Medical Microbiology, 2011, 62, 49-56.	2.7	78

#	Article	IF	CITATIONS
37	First case of E anophelis outbreak in an intensive-care unit. Lancet, The, 2013, 382, 855-856.	6.3	78
38	The PprA–PprB twoâ€component system activates CupE, the first nonâ€archetypal <i>Pseudomonas aeruginosa</i> chaperone–usher pathway system assembling fimbriae. Environmental Microbiology, 2011, 13, 666-683.	1.8	73
39	Polysaccharides serve as scaffold of biofilms formed by mucoid <i>Pseudomonas aeruginosa</i> . FEMS Immunology and Medical Microbiology, 2012, 65, 366-376.	2.7	73
40	Influence of outer membrane <i>c</i> â€ŧype cytochromes on particle size and activity of extracellular nanoparticles produced by <i>Shewanella oneidensis</i> . Biotechnology and Bioengineering, 2013, 110, 1831-1837.	1.7	72
41	C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth. Scientific Reports, 2015, 5, 10052.	1.6	72
42	Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against <i>Pseudomonas aeruginosa</i> Growth and Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2010, 54, 3960-3963.	1.4	70
43	Functional Amyloids Keep Quorum-sensing Molecules in Check. Journal of Biological Chemistry, 2015, 290, 6457-6469.	1.6	70
44	High β-Lactamase Levels Change the Pharmacodynamics of β-Lactam Antibiotics in Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2013, 57, 196-204.	1.4	69
45	Engineering PQS Biosynthesis Pathway for Enhancement of Bioelectricity Production in Pseudomonas aeruginosa Microbial Fuel Cells. PLoS ONE, 2013, 8, e63129.	1.1	65
46	A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia. Molecular Microbiology, 2010, 77, 1220-1236.	1.2	63
47	The LapG protein plays a role in <i>Pseudomonas aeruginosa</i> biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. MicrobiologyOpen, 2015, 4, 917-930.	1.2	63
48	In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm–dispersed cells via c-di-GMP manipulation. Nature Protocols, 2015, 10, 1165-1180.	5.5	63
49	Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biology, 2016, 6, 160162.	1.5	62
50	A cyclic di-GMP–binding adaptor protein interacts with a chemotaxis methyltransferase to control flagellar motor switching. Science Signaling, 2016, 9, ra102.	1.6	61
51	Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2017, 7, 451.	1.8	61
52	Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Scientific Reports, 2018, 8, 1155.	1.6	60
53	Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. Npj Biofilms and Microbiomes, 2019, 5, 1.	2.9	60
54	HigB of Pseudomonas aeruginosa Enhances Killing of Phagocytes by Up-Regulating the Type III Secretion System in Ciprofloxacin Induced Persister Cells. Frontiers in Cellular and Infection Microbiology, 2016, 6, 125.	1.8	58

#	Article	IF	CITATIONS
55	Persistent Bacterial Coinfection of a COVID-19 Patient Caused by a Genetically Adapted Pseudomonas aeruginosa Chronic Colonizer. Frontiers in Cellular and Infection Microbiology, 2021, 11, 641920.	1.8	56
56	Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators. PLoS ONE, 2011, 6, e27842.	1.1	53
57	Biofilms of Pathogenic Nontuberculous Mycobacteria Targeted by New Therapeutic Approaches. Antimicrobial Agents and Chemotherapy, 2016, 60, 24-35.	1.4	53
58	Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis. Genome Biology and Evolution, 2014, 6, 1158-1165.	1.1	52
59	RNA G-Quadruplex Structures Mediate Gene Regulation in Bacteria. MBio, 2020, 11, .	1.8	52
60	Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	51
61	The rapid <i>in vivo</i> evolution of <i>Pseudomonas aeruginosa</i> in ventilator-associated pneumonia patients leads to attenuated virulence. Open Biology, 2017, 7, 170029.	1.5	50
62	Multiple diguanylate cyclaseâ€coordinated regulation of pyoverdine synthesis in <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> . Environmental Microbiology Reports, 2015, 7, 498-507.	1.0	47
63	Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Scientific Reports, 2018, 8, 1594.	1.6	46
64	Metagenomic insights into the influence of salinity and cytostatic drugs on the composition and functional genes of microbial community in forward osmosis anaerobic membrane bioreactors. Chemical Engineering Journal, 2017, 326, 462-469.	6.6	46
65	RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator. International Journal of Molecular Sciences, 2015, 16, 28311-28319.	1.8	44
66	Comparative Systems Biology Analysis To Study the Mode of Action of the Isothiocyanate Compound Iberin on Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2014, 58, 6648-6659.	1.4	43
67	Itaconimides as Novel Quorum Sensing Inhibitors of Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2018, 8, 443.	1.8	43
68	Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone. Genome Biology and Evolution, 2013, 5, 807-818.	1.1	42
69	A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling. Journal of Biological Chemistry, 2016, 291, 16112-16123.	1.6	40
70	Mechanistic action of weak acid drugs on biofilms. Scientific Reports, 2017, 7, 4783.	1.6	40
71	Salicylic acid regulates <i>PIN2</i> auxin transporter hyperclustering and root gravitropic growth via <i>Remorin</i> â€dependent lipid nanodomain organisation in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 229, 963-978.	3.5	40
72	Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnology Advances, 2022, 56, 107915.	6.0	39

#	Article	IF	CITATIONS
73	High in vitro antimicrobial activity of β-peptoid–peptide hybrid oligomers against planktonic and biofilm cultures of Staphylococcus epidermidis. International Journal of Antimicrobial Agents, 2013, 41, 20-27.	1.1	38
74	Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms. Chemical Communications, 2017, 53, 3330-3333.	2.2	38
75	Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and "self-renewal―through downregulation of agr. BMC Microbiology, 2012, 12, 102.	1.3	35
76	Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Scientific Reports, 2015, 5, 11222.	1.6	35
77	Biogenic tellurium nanorods as a novel antivirulence agent inhibiting pyoverdine production in <i>Pseudomonas aeruginosa</i> . Biotechnology and Bioengineering, 2014, 111, 858-865.	1.7	34
78	Complete Genome Sequence and Transcriptomic Analysis of the Novel Pathogen <i>Elizabethkingia anophelis</i> in Response to Oxidative Stress. Genome Biology and Evolution, 2015, 7, 1676-1685.	1.1	34
79	Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nature Communications, 2021, 12, 4064.	5.8	34
80	Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches. Journal of Antimicrobial Chemotherapy, 2016, 71, 3081-3089.	1.3	33
81	T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. International Journal of Molecular Sciences, 2021, 22, 478.	1.8	33
82	Real Time, Spatial, and Temporal Mapping of the Distribution of c-di-GMP during Biofilm Development. Journal of Biological Chemistry, 2017, 292, 477-487.	1.6	32
83	Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents. Molecules, 2010, 15, 780-792.	1.7	31
84	Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell, 2022, 34, 374-394.	3.1	31
85	A novel twoâ€component system modulates quorum sensing and pathogenicity in <i>Burkholderia cenocepacia</i> . Molecular Microbiology, 2018, 108, 32-44.	1.2	30
86	The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms. Microbiology (United) Tj ETQq0 0 0	rg B0T.7 Ove	rlo ch 910 Tf 50
87	Population Dynamics of an Acinetobacter baumannii Clonal Complex during Colonization of Patients. Journal of Clinical Microbiology, 2014, 52, 3200-3208.	1.8	29
88	Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Communications Biology, 2018, 1, 57.	2.0	29
89	Increased Intracellular Cyclic di-AMP Levels Sensitize Streptococcus gallolyticus subsp. gallolyticus to Osmotic Stress and Reduce Biofilm Formation and Adherence on Intestinal Cells. Journal of Bacteriology, 2019, 201, .	1.0	29
90	Pleiotropic Effects of c-di-GMP Content in <i>Pseudomonas syringae</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	28

#	Article	IF	CITATIONS
91	Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiology (United Kingdom), 2013, 159, 1931-1936.	0.7	27
92	A stable synergistic microbial consortium for simultaneous azo dye removal and bioelectricity generation. Bioresource Technology, 2014, 155, 71-76.	4.8	27
93	Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of <i>Pseudomonas aeruginosa</i> during Dual-Species Biofilm Development with <i>Staphylococcus aureus</i> . MBio, 2018, 9, .	1.8	27
94	Identification of a new genePA5017involved in flagella-mediated motility, chemotaxis and biofilm formation inPseudomonas aeruginosa. FEMS Microbiology Letters, 2007, 272, 188-195.	0.7	26
95	Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material. International Journal of Molecular Sciences, 2013, 14, 3050-3064.	1.8	26
96	Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and <i>trans</i> -Cinnamaldehyde. Applied and Environmental Microbiology, 2018, 84, .	1.4	26
97	Surface Immobilization of Nano-Silver on Polymeric Medical Devices to Prevent Bacterial Biofilm Formation. Pathogens, 2019, 8, 93.	1.2	26
98	Glutathione Activates Type III Secretion System Through Vfr in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 2019, 9, 164.	1.8	26
99	Lightâ€Triggered Nitric Oxide Release by a Photosensitizer to Combat Bacterial Biofilm Infections. Chemistry - A European Journal, 2021, 27, 5453-5460.	1.7	26
100	Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. Plant Cell, 2022, 34, 395-417.	3.1	26
101	Repurposing the anticancer drug cisplatin with the aim of developing novel <i>Pseudomonas aeruginosa</i> infection control agents. Beilstein Journal of Organic Chemistry, 2018, 14, 3059-3069.	1.3	25
102	Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Reports, 2021, 34, 108884.	2.9	25
103	Nearâ€infrared lightâ€sensitive liposomes for enhanced plasmid DNA transfection. Bioengineering and Translational Medicine, 2016, 1, 357-364.	3.9	23
104	Elevated intracellular cyclicâ€diâ€GMP level in <i>Shewanella oneidensis</i> increases expression of <i>c</i> â€type cytochromes. Microbial Biotechnology, 2020, 13, 1904-1916.	2.0	23
105	The bacterial quorum sensing signal DSF hijacks <i>Arabidopsis thaliana</i> sterol biosynthesis to suppress plant innate immunity. Life Science Alliance, 2020, 3, e202000720.	1.3	23
106	Anthranilic acid from <i>Ralstonia solanacearum</i> plays dual roles in intraspecies signalling and inter-kingdom communication. ISME Journal, 2020, 14, 2248-2260.	4.4	21
107	Bacterial adaptation during chronic infection revealed by independent component analysis of transcriptomic data. BMC Microbiology, 2011, 11, 184.	1.3	20
108	Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2019, 294, 13789-13799.	1.6	20

#	Article	IF	CITATIONS
109	Energy efficient walking control for biped robots using interval type-2 fuzzy logic systems and optimized iteration algorithm. ISA Transactions, 2019, 87, 143-153.	3.1	20
110	Pseudomonas aeruginosa Oligoribonuclease Contributes to Tolerance to Ciprofloxacin by Regulating Pyocin Biosynthesis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	19
111	Antibody Treatment against Angiopoietin-Like 4 Reduces Pulmonary Edema and Injury in Secondary Pneumococcal Pneumonia. MBio, 2019, 10, .	1.8	19
112	rpoS-mutation variants are selected in Pseudomonas aeruginosa biofilms under imipenem pressure. Cell and Bioscience, 2021, 11, 138.	2.1	19
113	In Vitro Evaluation of Biofilm Dispersal as a Therapeutic Strategy To Restore Antimicrobial Efficacy. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	18
114	Transcriptomic analysis of KSHV-infected primary oral fibroblasts: The role of interferon-induced genes in the latency of oncogenic virus. Oncotarget, 2016, 7, 47052-47060.	0.8	18
115	Discovery of novel antimycobacterial drug therapy in biofilm of pathogenic nontuberculous mycobacterial keratitis. Ocular Surface, 2017, 15, 770-783.	2.2	17
116	Calcium-mediated Protein Folding and Stabilization of Salmonella Biofilm-associated Protein A. Journal of Molecular Biology, 2019, 431, 433-443.	2.0	17
117	The anti-cancerous drug doxorubicin decreases the c-di-CMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology (United Kingdom), 2016, 162, 1797-1807.	0.7	17
118	Insights into the Unique Lung Microbiota Profile of Pulmonary Tuberculosis Patients Using Metagenomic Next-Generation Sequencing. Microbiology Spectrum, 2022, 10, e0190121.	1.2	17
119	Metabolomics analysis of Pseudomonas chlororaphis JK12 algicidal activity under aerobic and micro-aerobic culture condition. AMB Express, 2018, 8, 131.	1.4	16
120	Integrated Genomic and Metabolomic Approach to the Discovery of Potential Anti-Quorum Sensing Natural Products from Microbes Associated with Marine Samples from Singapore. Marine Drugs, 2019, 17, 72.	2.2	16
121	Discovery, biosynthesis and antifungal mechanism of the polyene-polyol meijiemycin. Chemical Communications, 2020, 56, 822-825.	2.2	16
122	The novel coronavirus (COVID-19) pneumonia with negative detection of viral ribonucleic acid from nasopharyngeal swabs: a case report. BMC Infectious Diseases, 2020, 20, 317.	1.3	16
123	Identification of Microbiome Etiology Associated With Drug Resistance in Pleural Empyema. Frontiers in Cellular and Infection Microbiology, 2021, 11, 637018.	1.8	16
124	Glycopeptide antibiotic analogs for selective inactivation and two-photon imaging of vancomycin-resistant strains. Chemical Communications, 2016, 52, 4667-4670.	2.2	15
125	Chemical Biology Strategies for Biofilm Control. Microbiology Spectrum, 2015, 3, .	1.2	14
126	Recent progress in experimental and human disease-associated multi-species biofilms. Computational and Structural Biotechnology Journal, 2019, 17, 1234-1244.	1.9	14

#	Article	IF	CITATIONS
127	Selection of hyperadherent mutants in Pseudomonas putida biofilms. Microbiology (United Kingdom), 2011, 157, 2257-2265.	0.7	13
128	Draft Genome Sequence of the Model Naphthalene-Utilizing Organism Pseudomonas putida OUS82. Genome Announcements, 2014, 2, .	0.8	13
129	Gauging and Visualizing c-di-GMP Levels in Pseudomonas aeruginosa Using Fluorescence-Based Biosensors. Methods in Molecular Biology, 2017, 1657, 87-98.	0.4	13
130	Visualizing biofilm by targeting eDNA with long wavelength probe CDr15. Biomaterials Science, 2019, 7, 3594-3598.	2.6	13
131	NO donors and NO delivery methods for controlling biofilms in chronic lung infections. Applied Microbiology and Biotechnology, 2021, 105, 3931-3954.	1.7	13
132	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of an LpxC Inhibitor, CHIR-090, Alone or Combined with Colistin against Pseudomonas aeruginosa Biofilm. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	12
133	Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	12
134	Effects of Radix Ginseng on microbial infections: a narrative review. Journal of Traditional Chinese Medicine = Chung I Tsa Chih Ying Wen Pan / Sponsored By All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine, 2014, 34, 227-233.	0.4	11
135	Comparative Transcriptomics Unravels Prodigiosin's Potential Cancer-Specific Activity Between Human Small Airway Epithelial Cells and Lung Adenocarcinoma Cells. Frontiers in Oncology, 2018, 8, 573.	1.3	11
136	(1â€aryloxyâ€2â€hydroxypropyl)â€phenylpiperazine derivatives suppress <i>Candida albicans</i> virulence by interfering with morphological transition. Microbial Biotechnology, 2018, 11, 1080-1089.	2.0	11
137	CDy14: a novel biofilm probe targeting exopolysaccharide Psl. Chemical Communications, 2018, 54, 11865-11868.	2.2	11
138	Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria. Applied Microbiology and Biotechnology, 2015, 99, 1957-1966.	1.7	10
139	Engineering of bacterial electrochemical activity with global regulator manipulation. Electrochemistry Communications, 2018, 86, 117-120.	2.3	10
140	Molecular insights into the master regulator CysBâ€mediated bacterial virulence in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2019, 111, 1195-1210.	1.2	10
141	Sex Steroids Induce Membrane Stress Responses and Virulence Properties in Pseudomonas aeruginosa. MBio, 2020, 11, .	1.8	10
142	The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 2022, 88, .	1.4	10
143	Complete Genome Sequence of Bacillus altitudinis Type Strain SGAir0031 Isolated from Tropical Air Collected in Singapore. Genome Announcements, 2017, 5, .	0.8	9
144	Integrated Comparative Genomic Analysis and Phenotypic Profiling of Pseudomonas aeruginosa Isolates From Crude Oil. Frontiers in Microbiology, 2020, 11, 519.	1.5	9

#	Article	IF	CITATIONS
145	The MapZ-Mediated Methylation of Chemoreceptors Contributes to Pathogenicity of Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 67.	1.5	8
146	Protective Action of Linear Polyethylenimine against <i>Staphylococcus aureus</i> Colonization and Exaggerated Inflammation <i>in Vitro</i> and <i>in Vivo</i> . ACS Infectious Diseases, 2019, 5, 1411-1422.	1.8	8
147	Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae. Briefings in Bioinformatics, 2020, 21, 1347-1355.	3.2	8
148	Disruption of the Pseudomonas aeruginosa Tat system perturbs PQS-dependent quorum sensing and biofilm maturation through lack of the Rieske cytochrome bc1 sub-unit. PLoS Pathogens, 2021, 17, e1009425.	2.1	8
149	Pseudomonas aeruginosa modulates alginate biosynthesis and type VI secretion system in two critically ill COVID-19 patients. Cell and Bioscience, 2022, 12, 14.	2.1	8
150	Anditalea andensis ANESC-ST - An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions. PLoS ONE, 2015, 10, e0132766.	1.1	7
151	Mechanical signatures of microbial biofilms in micropillar-embedded growth chambers. Soft Matter, 2016, 12, 5224-5232.	1.2	7
152	Biofilms: Microbial Cities Wherein Flow Shapes Competition. Trends in Microbiology, 2017, 25, 331-332.	3.5	7
153	Spermidine plays a significant role in stabilizing a master transcription factor Clp to promote antifungal activity in Lysobacter enzymogenes. Applied Microbiology and Biotechnology, 2019, 103, 1811-1822.	1.7	7
154	Synthetic biohybrid peptidoglycan oligomers enable pan-bacteria-specific labeling and imaging: <i>in vitro</i> and <i>in vivo</i> . Chemical Science, 2020, 11, 3171-3179.	3.7	7
155	A Linker for the Solid-Phase Synthesis of Hydroxamic Acids and Identification of HDAC6 Inhibitors. ACS Combinatorial Science, 2017, 19, 657-669.	3.8	6
156	Characterization of a novel multidrug resistance plasmid pSGB23 isolated from Salmonella enterica subspecies enterica serovar Saintpaul. Gut Pathogens, 2018, 10, 20.	1.6	6
157	ECF Sigma Factor Hxul Is Critical for <i>In Vivo</i> Fitness of <i>Pseudomonas aeruginosa</i> during Infection. Microbiology Spectrum, 2022, 10, e0162021.	1.2	6
158	In Situ Mapping of the Mechanical Properties of Biofilms by Particle-tracking Microrheology. Journal of Visualized Experiments, 2015, , e53093.	0.2	5
159	Regulation of Virus-Associated Lymphoma Growth and Gene Expression by Bacterial Quorum-Sensing Molecules. Journal of Virology, 2018, 92, .	1.5	5
160	The Pyocin Regulator PrtR Regulates Virulence Expression of Pseudomonas aeruginosa by Modulation of Gac/Rsm System and c-di-GMP Signaling Pathway. Infection and Immunity, 2021, 89, .	1.0	5
161	Anti-bacterial properties of collagen-coated glass and polydimethylsiloxane substrates. Journal of Materials Science, 2017, 52, 9963-9978.	1.7	4
162	Pseudomonas aeruginosa Psl Exopolysaccharide Interacts with the Antimicrobial Peptide LG21. Water (Switzerland), 2017, 9, 681.	1.2	4

0

#	Article	IF	CITATIONS
163	Hinduchelins A–D, Noncytotoxic Catechol Derivatives from Streptoalloteichus hindustanus. Journal of Natural Products, 2018, 81, 1493-1496.	1.5	4
164	Adaptive tracking control of a nonlinear teleoperation system with uncertainties in kinematics and dynamics. Advances in Mechanical Engineering, 2019, 11, 168781401983817.	0.8	3
165	Quantitative analysis of actin filament assembly in yeast and plant by live cell fluorescence microscopy. Micron, 2017, 103, 78-83.	1.1	2
166	Psl-Dependent Cooperation Contributes to Drug Resistance of <i>Pseudomonas aeruginosa</i> in Dual-Species Biofilms with <i>Acinetobacter baumannii</i> . ACS Infectious Diseases, 2022, 8, 129-136.	1.8	2
167	Pattern differentiation in co-culture biofilms formed byStaphylococcus aureusandPseudomonas aeruginosa. FEMS Immunology and Medical Microbiology, 2011, 63, 151-151.	2.7	1
168	E anophelis outbreak in an intensive-care unit – Authors' reply. Lancet, The, 2013, 382, 2064-2065.	6.3	1
169	Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources. Scientific World Journal, The, 2014, 2014, 1-5.	0.8	1
170	Development and Quantitation of Pseudomonas aeruginosa Biofilms after in vitro cultivation in Flow-reactors. Bio-protocol, 2021, 11, e4126.	0.2	1
171	Molecular and Systems Biology Approaches for Analyzing Drug-Tolerant Bacterial Persister Cells. Sustainable Agriculture Reviews, 2020, , 109-128.	0.6	1

172 Chemical Biology Strategies for Biofilm Control. , 0, , 363-372.