
Sawsan Dacrory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution. International Journal of Biological Macromolecules, 2018, 119, 207-214.	7.5	101
2	Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102083.	3.1	75
3	Development of microporous cellulose-based smart xerogel reversible sensor via freeze drying for naked-eye detection of ammonia gas. Carbohydrate Polymers, 2019, 210, 196-203.	10.2	65
4	Synthesis, anti-proliferative activity, computational studies of tetrazole cellulose utilizing different homogenous catalyst. Carbohydrate Polymers, 2020, 229, 115537.	10.2	56
5	Smart microfibrillated cellulose as swab sponge-like aerogel for real-time colorimetric naked-eye sweat monitoring. Talanta, 2019, 205, 120166.	5.5	53
6	Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustainable Chemistry and Pharmacy, 2021, 21, 100419.	3.3	50
7	Synthesis of cellulose based amino acid functionalized nano-biocomplex: Characterization, antifungal activity, molecular docking and hemocompatibility. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100453.	2.9	43
8	Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: Kinetics and thermodynamics study. Separation and Purification Technology, 2022, 290, 120825.	7.9	41
9	Innovative synthesis of modified cellulose derivative as a uranium adsorbent from carbonate solutions of radioactive deposits. Cellulose, 2020, 27, 7093-7108.	4.9	39
10	A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112172.	5.0	37
11	In situ synthesis of Fe3O4@ cyanoethyl cellulose composite as antimicrobial and semiconducting film. Carbohydrate Polymers, 2020, 236, 116032.	10.2	36
12	Preparation and characterization of novel antibacterial blended films based on modified carboxymethyl cellulose/phenolic compounds. Polymer Bulletin, 2021, 78, 1061-1085.	3.3	36
13	Potential anticorrosive performance of green and sustainable inhibitor based on cellulose derivatives for carbon steel. Journal of Molecular Liquids, 2021, 338, 116604.	4.9	34
14	Adsorption of Fe ions by modified carrageenan beads with tricarboxy cellulose: kinetics study and four isotherm models. , 0, 165, 281-289.		34
15	Antimicrobial Activity, DFT Calculations, and Molecular Docking of Dialdehyde Cellulose/Graphene Oxide Film Against Covid-19. Journal of Polymers and the Environment, 2021, 29, 2248-2260.	5.0	32
16	Antimicrobial cellulosic hydrogel from olive oil industrial residue. International Journal of Biological Macromolecules, 2018, 117, 179-188.	7.5	31
17	Development of semiconductive foams based on cellulose- benzenesulfonate/CuFe2O4- nanoparticles and theoretical studies with DFT/ B3PW91/LANDZ2 basis set. Journal of Molecular Structure, 2022, 1247, 131390.	3.6	29
18	Development of biodegradable semiconducting foam based on micro-fibrillated cellulose/Cu-NPs. International Journal of Biological Macromolecules, 2019, 132, 351-359.	7.5	26

SAWSAN DACRORY

#	Article	IF	CITATIONS
19	Green, three component highly efficient synthesis of 2-amino-5,6,7,8-tetrahydro-4-‹i>H‹/i>-chromen-3-carbonitriles in water at ambient temperature. Green Chemistry Letters and Reviews, 2010, 3, 161-163.	4.7	24
20	FUNCTIONALIZATION AND CROSS-LINKING OF CARBOXYMETHYL CELLULOSE IN AQUEOUS MEDIA. Cellulose Chemistry and Technology, 2019, 53, 23-33.	1.2	24
21	Simple, Three-Component, Highly Efficient Green Synthesis of Thiazolo[3,2-a]pyridine Derivatives Under Neat Conditions. Synthetic Communications, 2011, 41, 2511-2516.	2.1	23
22	Cyanoethyl Cellulose/BaTiO ₃ /GO Flexible Films with Electroconductive Properties. ECS Journal of Solid State Science and Technology, 2021, 10, 083004.	1.8	19
23	Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan@clove oil beads. Biotechnology Journal, 2022, 17, e2100298.	3.5	19
24	Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115231.	3.5	14
25	Effective adsorption of cationic methylene blue dye on cellulose nanofiber/graphene oxide/silica nanocomposite: Kinetics and equilibrium. Journal of Applied Polymer Science, 2022, 139, .	2.6	13
26	Hydrophobic and Flame-Retardant Foam Based on Cellulose. Journal of Polymers and the Environment, 2022, 30, 2366-2377.	5.0	8
27	Development of mesoporous foam based on dicarboxylic cellulose and graphene oxide for potential oil/water separation. Polymer Bulletin, 2022, 79, 9563-9574.	3.3	7
28	A biodegradable film based on cellulose and thiazolidine bearing UV shielding property. Scientific Reports, 2022, 12, 7887.	3.3	7
29	Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial NanocompositeÂHydrogels. Journal of Renewable Materials, 2018, , .	2.2	6
30	EDTA-Functionalized Magnetic Graphene Oxide/Polyacrylamide Grafted Carboxymethyl Cellulose Hydrogel for Removal of Pb+2 from Aqueous Solution. Journal of Polymers and the Environment, 2022, 30, 1833-1846.	5.0	3
31	Development of Dielectric Film Based on Cellulose Loaded Nano-Silver and Carbon for Potential Energy Storage. ECS Journal of Solid State Science and Technology, 2021, 10, 123004.	1.8	3