Ilias Sakellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526081/publications.pdf

Version: 2024-02-01

840776 713466 29 453 11 21 h-index citations g-index papers 29 29 29 773 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Mesoporous CuO/TiO2 catalysts prepared by the ammonia driven deposition precipitation method for CO preferential oxidation: Effect of metal loading. Fuel, 2022, 311, 122491.	6.4	12
2	Towards Highly Loaded and Finely Dispersed CuO Catalysts via ADP: Effect of the Alumina Support. Catalysts, 2022, 12, 628.	3.5	1
3	reinforced with nano-graphene platelets. Polymer, 2021, 224, 123731.	3.8	8
4	Multi-Walled Carbon Nanotubes Decorated with Guanidinylated Dendritic Molecular Transporters: An Efficient Platform for the Selective Anticancer Activity of Doxorubicin. Pharmaceutics, 2021, 13, 858.	4.5	8
5	Low-Cost Electrodeposition of Size-Tunable Single-Crystal ZnO Nanorods. Fibers, 2021, 9, 38.	4.0	6
6	Engineering Mitochondriotropic Carbon Dots for Targeting Cancer Cells. Pharmaceuticals, 2021, 14, 932.	3.8	9
7	Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts. Materials, 2021, 14, 7117.	2.9	4
8	Heterostructured CoOx–TiO2 Mesoporous/Photonic Crystal Bilayer Films for Enhanced Visible-Light Harvesting and Photocatalysis. Materials, 2020, 13, 4305.	2.9	7
9	Cytotoxicity Effects of Water-Soluble Multi-Walled Carbon Nanotubes Decorated with Quaternized Hyperbranched Poly(ethyleneimine) Derivatives on Autotrophic and Heterotrophic Gram-Negative Bacteria. Pharmaceuticals, 2020, 13, 293.	3.8	4
10	Boosting visible light harvesting and charge separation in surface modified TiO ₂ photonic crystal catalysts with CoO _x nanoclusters. Materials Advances, 2020, 1, 2310-2322.	5.4	13
11	Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. International Journal of Pharmaceutics, 2020, 585, 119465.	5.2	17
12	Acid-Catalyzed Wet Torrefaction for Enhancing the Heating Value of Barley Straw. Energies, 2020, 13, 1693.	3.1	6
13	Patterned carbon dot-based thin films for solid-state devices. Nanoscale, 2020, 12, 10254-10264.	5.6	13
14	Graphene Quantum Dot-TiO2 Photonic Crystal Films for Photocatalytic Applications. Nanomaterials, 2020, 10, 2566.	4.1	11
15	Advanced Photocatalysts Based on Reduced Nanographene Oxide–TiO2 Photonic Crystal Films. Materials, 2019, 12, 2518.	2.9	10
16	Organic solar cells of enhanced efficiency and stability using zinc oxide:zinc tungstate nanocomposite as electron extraction layer. Organic Electronics, 2019, 71, 227-237.	2.6	18
17	Metal to insulator transition in conducting polyaniline/graphene oxide composites. Applied Physics Letters, 2019, 114, 162904.	3.3	3
18	Nanographene oxide–TiO ₂ photonic films as plasmon-free substrates for surface-enhanced Raman scattering. Nanoscale, 2019, 11, 21542-21553.	5.6	26

#	Article	IF	CITATION
19	Piezoelectric polyvinylidene fluoride-based epoxy composites produced by combined uniaxial compression and poling. Applied Physics Letters, 2019, 115, 192902.	3.3	3
20	Titania photonic crystal photocatalysts functionalized by graphene oxide nanocolloids. Applied Catalysis B: Environmental, 2019, 240, 277-290.	20.2	43
21	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	5.5	20
22	Fabrication of Antibacterial Poly(Vinyl Alcohol) Nanocomposite Films Containing Dendritic Polymer Functionalized Multi-Walled Carbon Nanotubes. Frontiers in Materials, 2018, 5, .	2.4	25
23	Avoiding ambient air and light induced degradation in high-efficiency polymer solar cells by the use of hydrogen-doped zinc oxide as electron extraction material. Nano Energy, 2017, 34, 500-514.	16.0	45
24	Dynamics of electric charge transport and determination of the percolation insulator-to-metal transition in polyvinyl-pyrrolidone/nano-graphene platelet composites. Applied Physics Letters, 2017, 110, .	3.3	8
25	Improved Stability of Polymer Solar Cells in Ambient Air via Atomic Layer Deposition of Ultrathin Dielectric Layers. Advanced Materials Interfaces, 2017, 4, 1700231.	3.7	8
26	Interfacial and space charge dielectric effects in Polypyrrole/ZnO composites. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700001.	0.8	0
27	Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study. Journal Physics D: Applied Physics, 2016, 49, 285305.	2.8	40
28	Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 11844-11858.	10.3	62
29	Combined high permittivity and high electrical conducÂŧivity of carbon nano-onion/polyaniline composites. Synthetic Metals, 2015, 209, 583-587.	3.9	23