Ambigapathi Moorthi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 188-193.	3.6	263
2	Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 109, 294-300.	2.5	215
3	Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering. International Journal of Biological Macromolecules, 2012, 50, 294-299.	3.6	160
4	A novel injectable temperature-sensitive zinc doped chitosan∫î²-glycerophosphate hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 2013, 54, 24-29.	3.6	137
5	Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. International Journal of Biological Macromolecules, 2020, 157, 135-145.	3.6	113
6	Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 1167-1172.	3.6	100
7	Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sciences, 2020, 245, 117389.	2.0	83
8	Enhanced Osteoblast Adhesion on Polymeric Nano-Scaffolds for Bone Tissue Engineering. Journal of Biomedical Nanotechnology, 2011, 7, 238-244.	0.5	80
9	Synthesis and Characterization of NanoscaleHydroxyapatite-Copper for Antimicrobial Activity Towards Bone Tissue Engineering Applications. Journal of Biomedical Nanotechnology, 2010, 6, 333-339.	0.5	65
10	Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. International Journal of Biological Macromolecules, 2017, 98, 67-74.	3.6	65
11	Synthesis and Characterization of Diopside Particles and Their Suitability Along with Chitosan Matrix for Bone Tissue Engineering <l>ln</l> <l>Vitro</l> and <l>ln</l> <l>Vivo</l> . Journal of Biomedical Nanotechnology, 2014, 10, 970-981.	0.5	57
12	Expression of microRNA-30c and its target genes in human osteoblastic cells by nano-bioglass ceramic-treatment. International Journal of Biological Macromolecules, 2013, 56, 181-185.	3.6	55
13	Synthesis, Characterization, and Antimicrobial Activity of Nano-Hydroxyapatite-Zinc for Bone Tissue Engineering Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 167-172.	0.9	46
14	Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Materials Science and Engineering C, 2017, 71, 1156-1165.	3.8	42
15	Effects of silica and calcium levels in nanobioglass ceramic particles on osteoblast proliferation. Materials Science and Engineering C, 2014, 43, 458-464.	3.8	41
16	Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. International Journal of Biological Macromolecules, 2018, 110, 65-73.	3.6	38
17	Synthesis, Characterization and Biological Action of Nano-Bioglass Ceramic Particles for Bone Formation. Journal of Biomaterials and Tissue Engineering, 2012, 2, 197-205.	0.0	22
18	Sol–gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2021, 32, 5.	1.7	18

#	Article	IF	CITATIONS
19	Formulation and biological actions of nano-bioglass ceramic particles doped with Calcarea phosphorica for bone tissue engineering. Materials Science and Engineering C, 2018, 83, 202-209.	3.8	16
20	Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 654-664.	1.6	15
21	Neuro-protective effects of nano-formulated hesperetin in a traumatic brain injury model of <i>Danio rerio</i> . Drug and Chemical Toxicology, 2022, 45, 507-514.	1.2	13
22	5-Azacytidine incorporated polycaprolactone-gelatin nanoscaffold as a potential material for cardiomyocyte differentiation. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 123-140.	1.9	11
23	Metal doped calcium silicate biomaterial for skin tissue regeneration in vitro. Journal of Biomaterials Applications, 2020, 36, 088532822096260.	1.2	11