David Matallanas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhaled multi-walled carbon nanotubes differently modulate global gene and protein expression in rat lungs. Nanotoxicology, 2021, 15, 238-256.	3.0	14
2	Proteomic signatures of radioresistance: Alteration of inflammation, angiogenesis and metabolism-related factors in radioresistant oesophageal adenocarcinoma. Cancer Treatment and Research Communications, 2021, 27, 100376.	1.7	3
3	The Ins and Outs of RAS Effector Complexes. Biomolecules, 2021, 11, 236.	4.0	27
4	BAX and SMAC regulate bistable properties of the apoptotic caspase system. Scientific Reports, 2021, 11, 3272.	3.3	12
5	IQGAP1 Is a Scaffold of the Core Proteins of the Hippo Pathway and Negatively Regulates the Pro-Apoptotic Signal Mediated by This Pathway. Cells, 2021, 10, 478.	4.1	14
6	Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling. Genes, 2021, 12, 553.	2.4	13
7	Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors. Small GTPases, 2020, 11, 371-383.	1.6	9
8	Protein and lipid homeostasis altered in rat macrophages after exposure to metallic oxide nanoparticles. Cell Biology and Toxicology, 2020, 36, 65-82.	5.3	16
9	An Investigation into Proteomic Constituents of Cerebrospinal Fluid in Patients with Chronic Peripheral Neuropathic Pain Medicated with Opioids- a Pilot Study. Journal of NeuroImmune Pharmacology, 2020, 16, 634-650.	4.1	2
10	Resolving the Interactome of the Human Macrophage Immunometabolism Regulator (MACIR) with Enhanced Membrane Protein Preparation and Affinity Proteomics. Proteomics, 2020, 20, e2000062.	2.2	4
11	Examination and characterisation of burst spinal cord stimulation on cerebrospinal fluid cellular and protein constituents in patient responders with chronic neuropathic pain - A Pilot Study. Journal of Neuroimmunology, 2020, 344, 577249.	2.3	13
12	Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. Journal of Nanobiotechnology, 2020, 18, 36.	9.1	19
13	Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nature Communications, 2020, 11, 499.	12.8	42
14	RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers, 2020, 12, 229.	3.7	32
15	Increased extracellular vesicles mediate inflammatory signalling in cystic fibrosis. Thorax, 2020, 75, 449-458.	5.6	17
16	Genetic Deletion of Zebrafish Rab28 Causes Defective Outer Segment Shedding, but Not Retinal Degeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 136.	3.7	10
17	Accurate prediction of kinase-substrate networks using knowledge graphs. PLoS Computational Biology, 2020, 16, e1007578.	3.2	19
18	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0

2

DAVID MATALLANAS

#	Article	IF	CITATIONS
19	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		Ο
20	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
21	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
22	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
23	Accurate prediction of kinase-substrate networks using knowledge graphs. , 2020, 16, e1007578.		0
24	An Integrative Computational Approach for a Prioritization of Key Transcription Regulators Associated With Nanomaterial-Induced Toxicity. Toxicological Sciences, 2019, 171, 303-314.	3.1	10
25	All over the place: deciphering HRAS signaling from different subcellular compartments. Molecular and Cellular Oncology, 2019, 6, e1605821.	0.7	Ο
26	Vgll3 operates via Tead1, Tead3 and Tead4 to influence myogenesis in skeletal muscle. Journal of Cell Science, 2019, 132, .	2.0	48
27	An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Reports, 2019, 26, 3100-3115.e7.	6.4	36
28	Quantifying the Kinase Activities of MST1/2. Methods in Molecular Biology, 2019, 1893, 289-304.	0.9	0
29	RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nature Communications, 2018, 9, 424.	12.8	72
30	Increased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors. Frontiers in Cellular and Infection Microbiology, 2018, 8, 357.	3.9	16
31	Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer. Nano Letters, 2018, 18, 5294-5305.	9.1	27
32	Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Systems, 2018, 7, 161-179.e14.	6.2	53
33	Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. Stem Cells, 2017, 35, 1958-1972.	3.2	93
34	A Compendium of Co-regulated Protein Complexes in Breast Cancer Reveals Collateral Loss Events. Cell Systems, 2017, 5, 399-409.e5.	6.2	46
35	The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair. Genes, 2016, 7, 28.	2.4	65
36	SARAH Domain-Mediated MST2-RASSF Dimeric Interactions. PLoS Computational Biology, 2016, 12, e1005051.	3.2	15

DAVID MATALLANAS

#	Article	IF	CITATIONS
37	Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell, 2016, 19, 491-501.	11.1	170
38	The spatiotemporal regulation of RAS signalling. Biochemical Society Transactions, 2016, 44, 1517-1522.	3.4	20
39	The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Seminars in Cell and Developmental Biology, 2016, 58, 96-107.	5.0	51
40	A microfluidic dual gradient generator for conducting cell-based drug combination assays. Integrative Biology (United Kingdom), 2016, 8, 39-49.	1.3	25
41	MST2-RASSF protein–protein interactions through SARAH domains. Briefings in Bioinformatics, 2016, 17, 593-602.	6.5	13
42	One Hippo and many masters: differential regulation of the Hippo pathway in cancer. Biochemical Society Transactions, 2014, 42, 816-821.	3.4	12
43	Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nature Cell Biology, 2014, 16, 673-684.	10.3	138
44	HGF Induces Epithelial-to-Mesenchymal Transition by Modulating the Mammalian Hippo/MST2 and ISG15 Pathways. Journal of Proteome Research, 2014, 13, 2874-2886.	3.7	82
45	Signalling by protein phosphatases and drug development: a systemsâ€centred view. FEBS Journal, 2013, 280, 751-765.	4.7	47
46	The Differential Effects of Wild-Type and Mutated K-Ras on MST2 Signaling Are Determined by K-Ras Activation Kinetics. Molecular and Cellular Biology, 2013, 33, 1859-1868.	2.3	31
47	Frequent loss of RAF kinase inhibitor protein expression in acute myeloid leukemia. Leukemia, 2012, 26, 1842-1849.	7.2	38
48	Mutant K-Ras Activation of the Proapoptotic MST2 Pathway Is Antagonized by Wild-Type K-Ras. Molecular Cell, 2011, 44, 893-906.	9.7	127
49	Raf Family Kinases: Old Dogs Have Learned New Tricks. Genes and Cancer, 2011, 2, 232-260.	1.9	322
50	The RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-κB signaling pathways. Oncogene, 2010, 29, 4307-4316.	5.9	83
51	Proapoptotic Kinase MST2 Coordinates Signaling Crosstalk between RASSF1A, Raf-1, and Akt. Cancer Research, 2010, 70, 1195-1203.	0.9	99
52	New druggable targets in the Ras pathway?. Current Opinion in Molecular Therapeutics, 2010, 12, 674-83.	2.8	19
53	RAN GTPase Is a RASSF1A Effector Involved in Controlling Microtubule Organization. Current Biology, 2009, 19, 1227-1232.	3.9	42
54	RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene, 2009, 28, 2988-2998.	5.9	77

DAVID MATALLANAS

#	Article	IF	CITATIONS
55	Proteomics and phosphoproteomics for the mapping of cellular signalling networks. Proteomics, 2008, 8, 4402-4415.	2.2	35
56	A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle, 2008, 7, 879-884.	2.6	35
57	RASSF1A Elicits Apoptosis through an MST2 Pathway Directing Proapoptotic Transcription by the p73 Tumor Suppressor Protein. Molecular Cell, 2007, 27, 962-975.	9.7	369
58	Distinct Utilization of Effectors and Biological Outcomes Resulting from Site-Specific Ras Activation: Ras Functions in Lipid Rafts and Golgi Complex Are Dispensable for Proliferation and Transformation. Molecular and Cellular Biology, 2006, 26, 100-116.	2.3	110
59	Myc Antagonizes Ras-mediated Growth Arrest in Leukemia Cells through the Inhibition of the Ras-ERK-p21Cip1 Pathway. Journal of Biological Chemistry, 2005, 280, 1112-1122.	3.4	37
60	Mammalian Sterile 20–Like Kinases in Tumor Suppression: An Emerging Pathway. Cancer Research, 2005, 65, 5485-5487.	0.9	53
61	Subcellular Localization Determines the Protective Effects of Activated ERK2 against Distinct Apoptogenic Stimuli in Myeloid Leukemia Cells. Journal of Biological Chemistry, 2004, 279, 32813-32823.	3.4	51
62	Activation of H-Ras in the Endoplasmic Reticulum by the RasGRF Family Guanine Nucleotide Exchange Factors. Molecular and Cellular Biology, 2004, 24, 1516-1530.	2.3	87
63	Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO Journal, 2003, 22, 3326-3336.	7.8	68
64	Differences on the Inhibitory Specificities of H-Ras, K-Ras, and N-Ras (N17) Dominant Negative Mutants Are Related to Their Membrane Microlocalization. Journal of Biological Chemistry, 2003, 278, 4572-4581.	3.4	102
65	Maintenance of Cdc42 GDP-bound State by Rho-GDI Inhibits MAP Kinase Activation by the Exchange Factor Ras-GRF. Journal of Biological Chemistry, 2001, 276, 21878-21884.	3.4	32
66	The Rho Family GTPase Cdc42 Regulates the Activation of Ras/MAP Kinase by the Exchange Factor Ras-GRF. Journal of Biological Chemistry, 2000, 275, 26441-26448.	3.4	40