Giuseppe Vannozzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing motor competence in kicking in individuals with Down syndrome through wearable motion sensors. Journal of Intellectual Disability Research, 2022, , .	2.0	3
2	Motor Competence in Individuals with Down Syndrome: Is an Improvement Still Possible in Adulthood?. International Journal of Environmental Research and Public Health, 2022, 19, 2157.	2.6	6
3	Biomechanics of the Hammer Throw: Narrative Review. Frontiers in Sports and Active Living, 2022, 4, 853536.	1.8	3
4	Rhythmic ability decline in aging individuals: The role of movement task complexity. Biomedical Human Kinetics, 2022, 14, 41-53.	0.6	1
5	The Use of Wearable Sensors for Preventing, Assessing, and Informing Recovery from Sport-Related Musculoskeletal Injuries: A Systematic Scoping Review. Sensors, 2022, 22, 3225.	3.8	13
6	Editorial: Rhythmic Patterns in Neuroscience and Human Physiology. Frontiers in Human Neuroscience, 2022, 16, .	2.0	1
7	Does visual cueing improve gait initiation in people with Parkinson's disease?. Human Movement Science, 2022, 84, 102970.	1.4	7
8	Non-specific chronic low back pain elicits kinematic and neuromuscular changes in walking and gait termination. Gait and Posture, 2021, 84, 238-244.	1.4	12
9	Age differences in anticipatory and executory mechanisms of gait initiation following unexpected balance perturbations. European Journal of Applied Physiology, 2021, 121, 465-478.	2.5	11
10	Auditory Cue Based on the Golden Ratio Can Improve Gait Patterns in People with Parkinson's Disease. Sensors, 2021, 21, 911.	3.8	11
11	An Innovative Sensor Fusion Algorithm for Motion Tracking With On-Line Bias Compensation: Application to Joint Angles Estimation in Yoga. IEEE Sensors Journal, 2021, 21, 21285-21294.	4.7	6
12	Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors, 2021, 21, 1858.	3.8	37
13	Estimation of 3D Body Center of Mass Acceleration and Instantaneous Velocity from a Wearable Inertial Sensor Network in Transfemoral Amputee Gait: A Case Study. Sensors, 2021, 21, 3129.	3.8	15
14	Biomechanical characteristics of handstand walking initiation. Gait and Posture, 2021, 86, 311-318.	1.4	2
15	Anticipatory postural adjustments in forward and backward single stepping: Task variability and effects of footwear. Journal of Biomechanics, 2021, 122, 110442.	2.1	3
16	THE HYBRID SUBISCHIAL SOCKET FOR PERSONS WITH TRANSFEMORAL AMPUTATION: GAIT PARAMETERS AND CLINICAL ASSESSMENT OF A CASE SERIES. Canadian Prosthetics & Orthotics Journal, 2021, 4, .	0.4	1
17	Hopping skill in individuals with Down syndrome: A qualitative and quantitative assessment. Human Movement Science, 2021, 78, 102821.	1.4	3
18	Modifications in Prefrontal Cortex Oxygenation in Linear and Curvilinear Dual Task Walking: A Combined fNIRS and IMUs Study. Sensors, 2021, 21, 6159.	3.8	8

#	Article	IF	CITATIONS
19	Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network. Gait and Posture, 2021, 90, 129-136.	1.4	2
20	Neuromechanical response of the upper body to unexpected perturbations during gait initiation in young and older adults. Aging Clinical and Experimental Research, 2021, 33, 909-919.	2.9	7
21	Deep Echo State Networks for Functional Ambulation Categories Estimation. , 2021, , .		Ο
22	Feasibility of using wearable inertial sensors for assessing gait changes after total knee arthroplasty: a systematic review and meta-analysis. Minerva Orthopedics, 2021, 72, .	1.0	2
23	Magnetic-free Extended Kalman Filter for upper limb kinematic assessment in Yoga. , 2021, 2021, 937-940.		2
24	Characterization of Anticipatory Postural Adjustments in Lateral Stepping: Impact of Footwear and Lower Limb Preference. Sensors, 2021, 21, 8244.	3.8	1
25	Gait event detection using inertial measurement units in people with transfemoral amputation: a comparative study. Medical and Biological Engineering and Computing, 2020, 58, 461-470.	2.8	13
26	Does Curved Walking Sharpen the Assessment of Gait Disorders? An Instrumented Approach Based on Wearable Inertial Sensors. Sensors, 2020, 20, 5244.	3.8	18
27	Sensorized Assessment of Dynamic Locomotor Imagery in People with Stroke and Healthy Subjects. Sensors, 2020, 20, 4545.	3.8	13
28	A Wearable Magnetometer-Free Motion Capture System: Innovative Solutions for Real-World Applications. IEEE Sensors Journal, 2020, 20, 8844-8857.	4.7	25
29	Stepping forward, stepping backward: a movement-related cortical potential study unveils distinctive brain activities. Behavioural Brain Research, 2020, 388, 112663.	2.2	11
30	Gross Motor Functions Assessed Through The Tgmd-3 In Down Syndrome Individuals And Related Gender Differences. Medicine and Science in Sports and Exercise, 2020, 52, 557-557.	0.4	0
31	Upper body accelerations during level walking in transtibial amputees. Prosthetics and Orthotics International, 2019, 43, 204-212.	1.0	5
32	The Association between Prefrontal Cortex Activity and Turning Behavior in People with and without Freezing of Gait. Neuroscience, 2019, 416, 168-176.	2.3	33
33	Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Scientific Reports, 2019, 9, 14449.	3.3	25
34	A wearable gait analysis protocol to support the choice of the appropriate ankle-foot orthosis: A comparative assessment in children with Cerebral Palsy. Clinical Biomechanics, 2019, 70, 177-185.	1.2	10
35	How do different movement references influence ERP related to gait initiation? A comparative methods' assessment. Journal of Neuroscience Methods, 2019, 311, 95-101.	2.5	3
36	Anaerobic capacity assessment in elite swimmers through inertial sensors. Physiological Measurement, 2019, 40, 064003.	2.1	10

#	Article	IF	CITATIONS
37	Gait Quality Assessment in Survivors from Severe Traumatic Brain Injury: An Instrumented Approach Based on Inertial Sensors. Sensors, 2019, 19, 5315.	3.8	22
38	A hitchhiker's guide to assessing young people's motor competence: Deciding what method to use. Journal of Science and Medicine in Sport, 2019, 22, 311-318.	1.3	72
39	Age-related changes in upper body contribution to braking forward locomotion in women. Gait and Posture, 2019, 68, 81-87.	1.4	6
40	Dynamic balance assessment during gait in children with Down and Prader-Willi syndromes using inertial sensors. Human Movement Science, 2019, 63, 53-61.	1.4	18
41	Gait phase proportions in different locomotion tasks: The pivot role of golden ratio. Neuroscience Letters, 2019, 699, 127-133.	2.1	14
42	The iFST: An instrumented version of the Fukuda Stepping Test for balance assessment. Gait and Posture, 2018, 60, 203-208.	1.4	23
43	Three-Dimensional Reconstruction of the Human Skeleton in Motion. , 2018, , 17-45.		4
44	When Children's Perceived and Actual Motor Competence Mismatch: Sport Participation and Gender Differences. Journal of Motor Learning and Development, 2018, 6, S440-S460.	0.4	42
45	Mechanisms of head stability during gait initiation in young and older women: A neuro-mechanical analysis. Journal of Electromyography and Kinesiology, 2018, 38, 103-110.	1.7	24
46	The association between prefrontal cortex activity and turning behaviors in people with and without freezing of gait. Gait and Posture, 2018, 66, S2-S3.	1.4	0
47	How different movement references influence cortical potentials related to step initiation? A comparative methods' assessment. Gait and Posture, 2018, 66, S33-S34.	1.4	О
48	A full-body 3D reconstruction of yoga poses through inertial sensing. Gait and Posture, 2018, 66, S24.	1.4	1
49	Usefulness of Magnetoinertial Wearable Devices in Neurorehabilitation of Children with Cerebral Palsy. Applied Bionics and Biomechanics, 2018, 2018, 1-7.	1.1	11
50	Vestibular rehabilitation training in patients with subacute stroke: A preliminary randomized controlled trial. NeuroRehabilitation, 2018, 43, 247-254.	1.3	35
51	Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors, 2018, 18, 873.	3.8	311
52	Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry. Journal of Biomechanics, 2017, 53, 84-89.	2.1	65
53	The instrumented Fukuda Stepping Test: Quantifying balance impairment in patients with sub-acute stroke. Gait and Posture, 2017, 57, 11-12.	1.4	1
54	Upper body accelerations during planned gait termination in young and older women. Journal of Biomechanics, 2017, 65, 138-144.	2.1	7

#	Article	IF	CITATIONS
55	Multi-sensor assessment of dynamic balance during gait in patients with subacute stroke. Journal of Biomechanics, 2017, 61, 208-215.	2.1	42
56	SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference. Gait and Posture, 2017, 58, 252-260.	1.4	82
57	Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review. BioMedical Engineering OnLine, 2017, 16, 106.	2.7	53
58	Three-Dimensional Reconstruction of the Human Skeleton in Motion. , 2017, , 1-29.		3
59	Smooth pursuits decrease balance control during locomotion in young and older healthy females. Experimental Brain Research, 2017, 235, 2661-2668.	1.5	3
60	Multilevel Upper Body Movement Control during Gait in Children with Cerebral Palsy. PLoS ONE, 2016, 11, e0151792.	2.5	25
61	Assessing the Performance of Sensor Fusion Methods: Application to Magnetic-Inertial-Based Human Body Tracking. Sensors, 2016, 16, 153.	3.8	22
62	Gait stability assessment in Down and Prader-Willi syndrome children using inertial sensors. Gait and Posture, 2016, 49, S16.	1.4	4
63	Use of sensor-based gait quality indices to assess physical rehabilitation programs in Parkinson's disease. Gait and Posture, 2016, 49, S17-S18.	1.4	Ο
64	Quantitative assessment of developmental levels in overarm throwing using wearable inertial sensing technology. Journal of Sports Sciences, 2016, 34, 1759-1765.	2.0	17
65	How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy. Sensors, 2015, 15, 23983-24001.	3.8	44
66	Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program. BioMed Research International, 2015, 2015, 1-10.	1.9	34
67	Wearable inertial sensors in swimming motion analysis: a systematic review. Journal of Sports Sciences, 2015, 33, 732-745.	2.0	104
68	Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors, 2014, 14, 18625-18649.	3.8	202
69	Neuromechanics of repeated stepping with external loading in young and older women. European Journal of Applied Physiology, 2014, 114, 983-994.	2.5	9
70	Cognitively challenging physical activity benefits executive function in overweight children. Journal of Sports Sciences, 2014, 32, 201-211.	2.0	134
71	Effects of task complexity on rhythmic reproduction performance in adults. Human Movement Science, 2013, 32, 203-213.	1.4	12
72	Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm. Gait and Posture, 2013, 37, 570-574.	1.4	26

#	Article	IF	CITATIONS
73	Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Mental Health and Physical Activity, 2013, 6, 172-180.	1.8	76
74	Association between Physical Activity Levels and Physiological Factors Underlying Mobility in Young, Middle-Aged and Older Individuals Living in a City District. PLoS ONE, 2013, 8, e74227.	2.5	32
75	Assessing Hopping Developmental Level in Childhood Using Wearable Inertial Sensor Devices. Motor Control, 2012, 16, 317-328.	0.6	25
76	Neuromechanical evidence of improved neuromuscular control around knee joint in volleyball players. European Journal of Applied Physiology, 2010, 108, 443-450.	2.5	16
77	Automatic detection of surface EMG activation timing using a wavelet transform based method. Journal of Electromyography and Kinesiology, 2010, 20, 767-772.	1.7	67
78	Association between physical activity level and mobility in individuals living in a city district: A pilot study. Gait and Posture, 2009, 30, S69.	1.4	0
79	Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates. Journal of Biomechanics, 2008, 41, 2219-2226.	2.1	27
80	A neurofuzzy inference system based on biomechanical features for the evaluation of the effects of physical training. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 11-17.	1.6	3
81	Enhanced anatomical calibration in human movement analysis. Gait and Posture, 2007, 26, 179-185.	1.4	24
82	Propagation of the hip joint centre location error to the estimate of femur vs pelvis orientation using a constrained or an unconstrained approach. Journal of Biomechanics, 2007, 40, 1228-1234.	2.1	22
83	Extraction of information on elder motor ability from clinical and biomechanical data through data mining. Computer Methods and Programs in Biomedicine, 2007, 88, 85-94.	4.7	6
84	An optimized protocol for hip joint centre determination using the functional method. Journal of Biomechanics, 2006, 39, 1096-1106.	2.1	218
85	Musculoskeletal system modelling for the evaluation of motor disability. Theoretical Issues in Ergonomics Science, 2005, 6, 319-324.	1.8	0
86	Knowledge discovery in databases of biomechanical variables: application to the sit to stand motor task. Journal of NeuroEngineering and Rehabilitation, 2004, 1, 7.	4.6	6
87	Improving detection of muscle activation intervals. IEEE Engineering in Medicine and Biology Magazine, 2001, 20, 38-46.	0.8	73