Paolina Garbeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525239/publications.pdf

Version: 2024-02-01

66234 76769 10,360 76 42 74 citations h-index g-index papers 79 79 79 9409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 2013, 37, 634-663.	3.9	1,929
2	MICROBIAL DIVERSITY IN SOIL: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology, 2004, 42, 243-270.	3.5	1,213
3	Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 2018, 645, 1048-1056.	3.9	711
4	Volatile affairs in microbial interactions. ISME Journal, 2015, 9, 2329-2335.	4.4	372
5	The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria. Trends in Microbiology, 2017, 25, 280-292.	3.5	361
6	Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 2020, 387, 121711.	6.5	347
7	Microbial Volatiles: Small Molecules with an Important Role in Intra- and Inter-Kingdom Interactions. Frontiers in Microbiology, 2017, 8, 2484.	1.5	305
8	Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 2018, 624, 753-757.	3.9	297
9	Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil, 2008, 302, 19-32.	1.8	264
10	Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature Reviews Microbiology, 2021, 19, 391-404.	13.6	234
11	Predominant Bacillus spp. in Agricultural Soil under Different Management Regimes Detected via PCR-DGGE. Microbial Ecology, 2003, 45, 302-316.	1.4	229
12	Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology, 2001, 41, 369-383.	1.4	211
13	Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environmental Microbiology, 2006, 8, 233-246.	1.8	197
14	Calling from distance: attraction of soil bacteria by plant root volatiles. ISME Journal, 2018, 12, 1252-1262.	4.4	195
15	Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 2002, 13, 29-40.	1.5	173
16	Transcriptional and antagonistic responses of <i>Pseudomonas fluorescens</i> Pf0-1 to phylogenetically different bacterial competitors. ISME Journal, 2011, 5, 973-985.	4.4	166
17	Volatile-mediated interactions between phylogenetically different soil bacteria. Frontiers in Microbiology, 2014, 5, 289.	1.5	158
18	The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS ONE, 2017, 12, e0174362.	1.1	155

#	Article	IF	Citations
19	Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes. FEMS Microbiology Ecology, 2004, 47, 51-64.	1.3	153
20	Microbial Small Talk: Volatiles in Fungal–Bacterial Interactions. Frontiers in Microbiology, 2015, 6, 1495.	1.5	149
21	Volatiles produced by the mycophagous soil bacterium <i>Collimonas</i> . FEMS Microbiology Ecology, 2014, 87, 639-649.	1.3	139
22	Fungistasis and general soil biostasis – A new synthesis. Soil Biology and Biochemistry, 2011, 43, 469-477.	4.2	122
23	Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Scientific Reports, 2017, 7, 862.	1.6	115
24	The preyâ \in ^M s scent â \in " Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME Journal, 2017, 11, 817-820.	4.4	115
25	Impact of interspecific interactions on antimicrobial activity among soil bacteria. Frontiers in Microbiology, 2014, 5, 567.	1.5	109
26	Nonâ€random species loss in bacterial communities reduces antifungal volatile production. Ecology, 2015, 96, 2042-2048.	1.5	109
27	Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology, 2006, 52, 1006-1015.	0.8	103
28	Airborne medicine: bacterial volatiles and their influence on plant health. New Phytologist, 2020, 226, 32-43.	3.5	93
29	Microbe-driven chemical ecology: past, present and future. ISME Journal, 2019, 13, 2656-2663.	4.4	86
30	Volatiles in Inter-Specific Bacterial Interactions. Frontiers in Microbiology, 2015, 6, 1412.	1.5	84
31	A fragrant neighborhood: volatile mediated bacterial interactions in soil. Frontiers in Microbiology, 2015, 6, 1212.	1.5	77
32	The Chemistry of Stress: Understanding the â€~Cry for Help' of Plant Roots. Metabolites, 2021, 11, 357.	1.3	73
33	Inter-specific Interactions Between Carbon-limited Soil Bacteria Affect Behavior and Gene Expression. Microbial Ecology, 2009, 58, 36-46.	1.4	71
34	Root traits and belowground herbivores relate to plant–soil feedback variation among congeners. Nature Communications, 2019, 10, 1564.	5.8	71
35	Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds. Microbial Biotechnology, 2017, 10, 910-925.	2.0	70
36	Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes fromNitrosospiraspecies isolated from soil. FEMS Microbiology Letters, 2007, 266, 83-89.	0.7	69

#	Article	IF	CITATIONS
37	Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics, 2015, 16, 1103.	1.2	57
38	Identification and sensitive endophytic detection of the fire blight pathogen Erwinia amylovora with 23S ribosomal DNA sequences and the polymerase chain reaction. Plant Pathology, 1996, 45, 1139-1149.	1.2	55
39	Healthy scents: microbial volatiles as new frontier in antibiotic research?. Current Opinion in Microbiology, 2018, 45, 84-91.	2.3	55
40	Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiology Ecology, 2019, 95, .	1.3	54
41	Lessons from 1,3â€Hydride Shifts in Sesquiterpene Cyclizations. Angewandte Chemie - International Edition, 2016, 55, 13593-13596.	7.2	53
42	Production of ammonia as a low-cost and long-distance antibiotic strategy by <i>Streptomyces</i> species. ISME Journal, 2020, 14, 569-583.	4.4	52
43	Volatileâ€mediated antagonism of soil bacterial communities against fungi. Environmental Microbiology, 2020, 22, 1025-1035.	1.8	49
44	Recognition and Detection in Seed of the Xanthomonas Pathogens That Cause Cereal Leaf Streak Using rDNA Spacer Sequences and Polymerase Chain Reaction. Phytopathology, 1996, 86, 63.	1.1	45
45	Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biology and Biochemistry, 2004, 36, 1453-1463.	4.2	43
46	Biosynthesis, evolution and ecology of microbial terpenoids. Natural Product Reports, 2022, 39, 249-272.	5.2	40
47	Über 1,3â€Hydridverschiebungen in Sesquiterpenâ€Cyclisierungen. Angewandte Chemie, 2016, 128, 13791-13794.	1.6	33
48	No Apparent Costs for Facultative Antibiotic Production by the Soil Bacterium Pseudomonas fluorescens Pf0-1. PLoS ONE, 2011, 6, e27266.	1.1	33
49	Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. Signaling and Communication in Plants, 2016, , 175-210.	0.5	30
50	Fungus-associated bacteriome in charge of their host behavior. Fungal Genetics and Biology, 2017, 102, 38-48.	0.9	30
51	Phylogenomic analyses and distribution of terpene synthases among Streptomyces. Beilstein Journal of Organic Chemistry, 2019, 15, 1181-1193.	1.3	28
52	Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10×Metagenomics. MSystems, 2021, 6, e0111620.	1.7	27
53	The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. MicrobiologyOpen, 2020, 9, e00954.	1.2	26
54	A non-invasive soil-based setup to study tomato root volatiles released by healthy and infected roots. Scientific Reports, 2020, 10, 12704.	1.6	26

#	Article	IF	CITATIONS
55	Editorial: Smelly Fumes: Volatile-Mediated Communication between Bacteria and Other Organisms. Frontiers in Microbiology, 2016, 7, 2031.	1.5	23
56	LAESI mass spectrometry imaging as a tool to differentiate the root metabolome of native and range-expanding plant species. Planta, 2018, 248, 1515-1523.	1.6	23
57	Microbial and volatile profiling of soils suppressive to <i>Fusarium culmorum</i> of wheat. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192527.	1.2	23
58	Biological activities associated with the volatile compound 2,5-bis (1-methylethyl)-pyrazine. FEMS Microbiology Letters, 2019, 366, .	0.7	22
59	Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry. Frontiers in Plant Science, 2017, 8, 1861.	1.7	21
60	Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiology Ecology, 2022, 98, .	1.3	18
61	Investigating the effect of belowground microbial volatiles on plant nutrient status: perspective and limitations. Journal of Plant Interactions, 2020, 15, 188-195.	1.0	17
62	Validation of the AlamarBlue \hat{A}^{\otimes} Assay as a Fast Screening Method to Determine the Antimicrobial Activity of Botanical Extracts. PLoS ONE, 2016, 11, e0169090.	1.1	17
63	Growth promotion and inhibition induced by interactions of groundwater bacteria. FEMS Microbiology Ecology, 2018, 94, .	1.3	16
64	Disentangling soil microbiome functions by perturbation. Environmental Microbiology Reports, 2021, 13, 582-590.	1.0	16
65	Antimicrobial Compounds in the Volatilome of Social Spider Communities. Frontiers in Microbiology, 2021, 12, 700693.	1.5	15
66	The Effect of Phylogenetically Different Bacteria on the Fitness of Pseudomonas fluorescens in Sand Microcosms. PLoS ONE, 2015, 10, e0119838.	1.1	15
67	Draft Genome Sequence of the Antagonistic Rhizosphere Bacterium Serratia plymuthica Strain PRI-2C. Journal of Bacteriology, 2012, 194, 4119-4120.	1.0	14
68	Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics, 2022, 11, 109.	1.5	12
69	Deciphering the genome and secondary metabolome of the plant pathogen Fusarium culmorum. FEMS Microbiology Ecology, 2018, 94, .	1.3	10
70	The nitrification inhibitor nitrapyrin has non-target effects on the soil microbial community structure, composition, and functions. Applied Soil Ecology, 2022, 171, 104350.	2.1	9
71	The effect of isabelin, a sesquiterpene lactone from Ambrosia artemisiifolia on soil microorganisms and human pathogens. FEMS Microbiology Letters, 2018, 365, .	0.7	8
72	Exploring the Volatiles Released from Roots of Wild and Domesticated Tomato Plants under Insect Attack. Molecules, 2022, 27, 1612.	1.7	6

#	Article	IF	CITATIONS
73	Intraspecific variation in multiple trait responses of Alexandrium ostenfeldii towards elevated pCO2. Harmful Algae, 2021, 101, 101970.	2.2	5
74	Volatile Interplay Between Microbes: Friends and Foes. , 2020, , 215-235.		4
75	Draft Genome Sequence of Pedobacter sp. Strain V48, Isolated from a Coastal Sand Dune in the Netherlands. Genome Announcements, 2014, 2, .	0.8	2
76	The Fascinating World of Belowground Communication. Frontiers for Young Minds, 0, 8, .	0.8	1