Andy Way

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352514/publications.pdf

Version: 2024-02-01

129 papers	1,535 citations	15 h-index	610775 24 g-index
135	135	135	596
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Is Neural Machine Translation the New State of the Art?. Prague Bulletin of Mathematical Linguistics, 2017, 108, 109-120.	0.7	112
2	Exploiting Cross-Sentence Context for Neural Machine Translation. , 2017, , .		93
3	Attaining the Unattainable? Reassessing Claims of Human Parity in Neural Machine Translation. , 2018, , .		74
4	Getting Gender Right in Neural Machine Translation. , 2018, , .		72
5	Quality Expectations of Machine Translation. Machine Translation, 2018, , 159-178.	0.1	43
6	Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction., 2018,,.		37
7	Translators' perceptions of literary post-editing using statistical and neural machine translation. Translation Spaces(Netherland), 2018, 7, 240-262.	0.8	36
8	Post-editing Effort of a Novel With Statistical and Neural Machine Translation. Frontiers in Digital Humanities, 2018, 5, .	1.2	33
9	Evaluating machine translation with LFG dependencies. Machine Translation, 2007, 21, 95-119.	1.3	30
10	Statistical Machine Translation: A Guide for Linguists and Translators. Language and Linguistics Compass, 2011, 5, 205-226.	1.3	29
11	Long-distance dependency resolution in automatically acquired wide-coverage PCFG-based LFG approximations. , 2004, , .		28
12	What Level of Quality Can Neural Machine Translation Attain on Literary Text?. Machine Translation, 2018, , 263-287.	0.1	28
13	Comparing example-based and statistical machine translation. Natural Language Engineering, 2005, 11, 295.	2.1	22
14	Human versus automatic quality evaluation of NMT and PBSMT. Machine Translation, 2018, 32, 217-235.	1.3	22
15	wEBMT: Developing and Validating an Example-Based Machine Translation System Using the World Wide Web. Computational Linguistics, 2003, 29, 421-457.	2.5	21
16	On the Role of Translations in Stateâ€ofâ€theâ€Art Statistical Machine Translation. Language and Linguistics Compass, 2011, 5, 227-248.	1.3	21
17	Manual labour: tackling machine translation for sign languages. Machine Translation, 2013, 27, 25-64.	1.3	21
18	Machine-assisted translation of literary text. Translation Spaces(Netherland), 2015, 4, 240-267.	0.8	21

#	Article	IF	CITATIONS
19	Dependency-based automatic evaluation for machine translation. , 2007, , .		21
20	Labelled dependencies in machine translation evaluation. , 2007, , .		21
21	Translating Low-Resource Languages by Vocabulary Adaptation from Close Counterparts. ACM Transactions on Asian and Low-Resource Language Information Processing, 2017, 16, 1-14.	1.3	19
22	Post-editing neural machine translation versus translation memory segments. Machine Translation, 2019, 33, 31-59.	1.3	18
23	Contextual bitext-derived paraphrases in automatic MT evaluation. , 2006, , .		18
24	TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Language Resources and Evaluation, 2018, 52, 365-400.	1.8	17
25	A Novel Approach to Dropped Pronoun Translation. , 2016, , .		17
26	Neural machine translation of low-resource languages using SMT phrase pair injection. Natural Language Engineering, 2021, 27, 271-292.	2.1	16
27	Syntax- and semantic-based reordering in hierarchical phrase-based statistical machine translation. Expert Systems With Applications, 2017, 84, 186-199.	4.4	15
28	Pre-Reordering for Neural Machine Translation: Helpful or Harmful?. Prague Bulletin of Mathematical Linguistics, 2017, 108, 171-182.	0.7	15
29	Hybrid example-based SMT., 2005,,.		14
30	Evaluating MT for massive open online courses. Machine Translation, 2018, 32, 255-278.	1.3	13
31	Ethical Considerations in NLP Shared Tasks. , 2017, , .		13
32	Robust sub-sentential alignment of phrase-structure trees. , 2004, , .		13
33	Referential Translation Machines for Predicting Translation Quality. , 2014, , .		13
34	A hybrid architecture for robust MT using LFG-DOP. Journal of Experimental and Theoretical Artificial Intelligence, 1999, 11, 441-471.	1.8	12
35	Wide-Coverage Deep Statistical Parsing Using Automatic Dependency Structure Annotation. Computational Linguistics, 2008, 34, 81-124.	2.5	12
36	Domain adaptation of statistical machine translation with domain-focused web crawling. Language Resources and Evaluation, 2015, 49, 147-193.	1.8	12

#	Article	IF	Citations
37	A review of the state-of-the-art in automatic post-editing. Machine Translation, 2021, 35, 101-143.	1.3	12
38	Maintaining Sentiment Polarity in Translation of User-Generated Content. Prague Bulletin of Mathematical Linguistics, 2017, 108, 73-84.	0.7	12
39	Machine translation: Where are we at today?. , 2020, , .		12
40	Syntactically Lexicalized Phrase-Based SMT. IEEE Transactions on Audio Speech and Language Processing, 2008, 16, 1260-1273.	3.8	11
41	Rapid Development of Competitive Translation Engines for Access to Multilingual COVID-19 Information. Informatics, 2020, 7, 19.	2.4	11
42	Extracting In-domain Training Corpora for Neural Machine Translation Using Data Selection Methods. , $2018, , .$		11
43	Parallel FDA5 for Fast Deployment of Accurate Statistical Machine Translation Systems., 2014,,.		11
44	SYNTACTIC PHRASE-BASED STATISTICAL MACHINE TRANSLATION. , 2006, , .		10
45	Integrating source-language context into phrase-based statistical machine translation. Machine Translation, 2011, 25, 239-285.	1.3	10
46	Referential translation machines for predicting semantic similarity. Language Resources and Evaluation, 2016, 50, 793-819.	1.8	10
47	Analysing terminology translation errors in statistical and neural machine translation. Machine Translation, 2020, 34, 149-195.	1.3	10
48	Exploiting Parallel Treebanks to Improve Phrase-Based Statistical Machine Translation. Lecture Notes in Computer Science, 2009, , 318-331.	1.0	10
49	Improving word alignment using syntactic dependencies. , 2008, , .		10
50	Large-Scale Induction and Evaluation of Lexical Resources from the Penn-II and Penn-III Treebanks. Computational Linguistics, 2005, 31, 329-366.	2.5	9
51	No Padding Please: Efficient Neural Handwriting Recognition. , 2019, , .		9
52	From Treebank Resources to LFG F-Structures. Text, Speech and Language Technology, 2003, , 367-389.	0.2	9
53	Automatic generation of parallel treebanks. , 2008, , .		9
54	Translating Literary Text between Related Languages using SMT. , 2015, , .		9

#	Article	IF	CITATIONS
55	A novel and robust approach for pro-drop language translation. Machine Translation, 2017, 31, 65-87.	1.3	8
56	A roadmap to neural automatic post-editing: an empirical approach. Machine Translation, 2020, 34, 67-96.	1.3	8
57	Improved Named Entity Recognition using Machine Translation-based Cross-lingual Information. Computacion Y Sistemas, 2016, 20, .	0.2	8
58	Improving Character-Based Decoding Using Target-Side Morphological Information for Neural Machine Translation. , $2018, , .$		8
59	ParFDA for Fast Deployment of Accurate Statistical Machine Translation Systems, Benchmarks, and Statistics. , $2015, \ldots$		8
60	Referential Translation Machines for Predicting Translation Quality and Related Statistics., 2015,,.		8
61	MaTrEx. , 2009, , .		8
62	Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation. , $2014, , .$		8
63	Using Images to Improve Machine-Translating E-Commerce Product Listings , 2017, , .		8
64	Learning to Jointly Translate and Predict Dropped Pronouns with a Shared Reconstruction Mechanism. , 2018, , .		8
65	Knowledge Distillation: A Method for Making Neural Machine Translation More Efficient. Information (Switzerland), 2022, 13, 88.	1.7	8
66	Hybrid data-driven models of machine translation. Machine Translation, 2007, 19, 301-323.	1.3	7
67	What types of word alignment improve statistical machine translation?. Machine Translation, 2012, 26, 289-323.	1.3	7
68	OpenMaTrEx: A Free/Open-Source Marker-Driven Example-Based Machine Translation System. Lecture Notes in Computer Science, 2010, , 121-126.	1.0	7
69	Mining Purchase Intent in Twitter. Computacion Y Sistemas, 2019, 23, .	0.2	7
70	MaTrEx. , 2008, , .		7
71	Investigating Query Expansion and Coreference Resolution in Question Answering on BERT. Lecture Notes in Computer Science, 2020, , 47-59.	1.0	7
72	Evaluating Automatic LFG F-Structure Annotation for the Penn-II Treebank. Research on Language and Computation, 2004, 2, 523-547.	0.4	6

#	Article	IF	CITATIONS
73	Treebank-Based Acquisition of Multilingual Unification Grammar Resources. Research on Language and Computation, 2005, 3, 247-279.	0.4	6
74	A syntactic language model based on incremental CCG parsing. , 2008, , .		6
75	Crawl and crowd to bring machine translation to under-resourced languages. Language Resources and Evaluation, 2017, 51, 1019-1051.	1.8	6
76	Applying N-gram Alignment Entropy to Improve Feature Decay Algorithms. Prague Bulletin of Mathematical Linguistics, 2017, 108, 245-256.	0.7	6
77	Semantic Modelling and Publishing of Traditional Data Collection Questionnaires and Answers. Information (Switzerland), 2018, 9, 297.	1.7	6
78	Creating a Multimodal Translation Tool and Testing Machine Translation Integration Using Touch and Voice. Informatics, $2019, 6, 13$.	2.4	6
79	Human Evaluation of English–Irish Transformer-Based NMT. Information (Switzerland), 2022, 13, 309.	1.7	6
80	Automatic Test Suite generation. Machine Translation, 1993, 8, 29-38.	1.3	5
81	A Typology of Translation Problems for Eurotra Translation Machines. Machine Translation, 1997, 12, 323-374.	1.3	5
82	Controlled Translation in an Example-based Environment: What do Automatic Evaluation Metrics Tell Us?. Machine Translation, 2005, 19, 1-36.	1.3	5
83	Panning for EBMT gold, or "Remembering not to forget― Machine Translation, 2010, 24, 177-208.	1.3	5
84	Boosting Neural POS Tagger for Farsi Using Morphological Information. ACM Transactions on Asian and Low-Resource Language Information Processing, 2016, 16, 1-15.	1.3	5
85	Combining SMT and NMT Back-Translated Data for Efficient NMT. , 2019, , .		5
86	Large-scale induction and evaluation of lexical resources from the Penn-II treebank. , 2004, , .		5
87	Improving English-to-Indian Language Neural Machine Translation Systems. Information (Switzerland), 2022, 13, 245.	1.7	5
88	Metric and reference factors in minimum error rate training. Machine Translation, 2010, 24, 27-38.	1.3	4
89	Sentence Similarity-Based Source Context Modelling in PBSMT. , 2010, , .		4
90	Source-Side Suffix Stripping for Bengali-to-English SMT. , 2012, , .		4

#	Article	lF	CITATIONS
91	Editors' foreword to the invited issue on SMT and NMT. Machine Translation, 2018, 32, 191-194.	1.3	4
92	Can Google Translate Rewire Your L2 English Processing?. Digital, 2021, 1, 66-85.	1.1	4
93	Improving the Reliability of Query Expansion for User-Generated Speech Retrieval Using Query Performance Prediction. Lecture Notes in Computer Science, 2017, , 43-56.	1.0	4
94	Selecting Artificially-Generated Sentences for Fine-Tuning Neural Machine Translation. , 2019, , .		4
95	Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindi-to-English. , 2019, , .		4
96	Transformation and Decomposition for Efficiently Implementing and Improving Dependency-to-String Model In Moses. , 2014, , .		4
97	On the Complementarity between Human Translators and Machine Translation. Hermes (Denmark), 2017, , 21-42.	0.1	4
98	Recent advances of low-resource neural machine translation. Machine Translation, 2021, 35, 451-474.	1.3	4
99	Automatically generated parallel treebanks and their exploitability in machine translation. Machine Translation, 2009, 23, 1-22.	1.3	3
100	Terminology Translation in Low-Resource Scenarios. Information (Switzerland), 2019, 10, 273.	1.7	3
101	Improved feature decay algorithms for statistical machine translation. Natural Language Engineering, 2022, 28, 71-91.	2.1	3
102	Comparing Statistical and Neural Machine Translation Performance on Hindi-To-Tamil and English-To-Tamil. Digital, 2021, 1, 86-102.	1.1	3
103	Extending Feature Decay Algorithms Using Alignment Entropy. Lecture Notes in Computer Science, 2017, , 170-182.	1.0	3
104	FaDA: Fast Document Aligner using Word Embedding. Prague Bulletin of Mathematical Linguistics, 2016, 106, 169-179.	0.7	3
105	Fine-Grained Temporal Orientation and its Relationship with Psycho-Demographic Correlates. , 2018, , .		3
106	Bilingually Motivated Word Segmentation for Statistical Machine Translation. ACM Transactions on Asian Language Information Processing, 2009, 8, 1-24.	0.8	2
107	Combining translation memories and statistical machine translation using sparse features. Machine Translation, 2016, 30, 183-202.	1.3	2
108	Towards language-agnostic alignment of product titles and descriptions: a neural approach., 2019,,.		2

#	Article	IF	CITATIONS
109	Selecting Backtranslated Data from Multiple Sources for Improved Neural Machine Translation. , 2020, , .		2
110	Abu-MaTran at WMT 2014 Translation Task: Two-step Data Selection and RBMT-Style Synthetic Rules. , 2014, , .		2
111	DCU-Lingo24 Participation in WMT 2014 Hindi-English Translation task. , 2014, , .		2
112	Providing Morphological Information for SMT Using Neural Networks. Prague Bulletin of Mathematical Linguistics, 2017, 108, 271-282.	0.7	2
113	Effectively Aligning and Filtering Parallel Corpora under Sparse Data Conditions. , 2020, , .		2
114	Augmenting training data with syntactic phrasal-segments in low-resource neural machine translation. Machine Translation, 2021, 35, 661-685.	1.3	2
115	Investigating Contextual Influence in Document-Level Translation. Information (Switzerland), 2022, 13, 249.	1.7	2
116	Introduction to special issue on example-based machine translation. Machine Translation, 2007, 19, 193-195.	1.3	1
117	Improved Chinese-English SMT with Chinese "DE―Construction Classification and Reordering. ACM Transactions on Asian Language Information Processing, 2011, 10, 1-22.	0.8	1
118	Efficient accurate syntactic direct translation models: one tree at a time. Machine Translation, 2012, 26, 121-136.	1.3	1
119	Place-Type Detection in Location-Based Social Networks. , 2017, , .		1
120	Local Event Discovery from Tweets Metadata. , 2017, , .		1
121	Syntax-Informed Interactive Neural Machine Translation. , 2020, , .		1
122	A Three-Pass System Combination Framework by Combining Multiple Hypothesis Alignment Methods. , 2009, , .		0
123	Hierarchical Pitman-Yor Language Model for Machine Translation. , 2010, , .		0
124	Investigating the Relationship between Classification Quality and SMT Performance in Discriminative Reordering Models. Entropy, 2017, 19, 340.	1.1	0
125	Augmenting Training Data for Low-Resource Neural Machine Translation via Bilingual Word Embeddings and BERT Language Modelling. , 2021, , .		0
126	Context-Aware Graph Segmentation for Graph-Based Translation. , 2017, , .		0

ANDY WAY

#	Article	IF	CITATIONS
127	SuperNMT: Neural Machine Translation with Semantic Supersenses and Syntactic Supertags. , 2018, , .		O
128	IDEA: An Interactive Dialogue Translation Demo System Using Furhat Robots. Lecture Notes in Computer Science, 2019, , 645-648.	1.0	0
129	From MT to LREV: managing the transition. Machine Translation, 2021, 35, 447-448.	1.3	O