

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525087/publications.pdf Version: 2024-02-01

|                | 159358                                      | 205818                        |
|----------------|---------------------------------------------|-------------------------------|
| 2,984          | 30                                          | 48                            |
| citations      | h-index                                     | g-index                       |
|                |                                             |                               |
|                |                                             |                               |
|                |                                             |                               |
| 114            | 114                                         | 3324                          |
| docs citations | times ranked                                | citing authors                |
|                |                                             |                               |
|                | 2,984<br>citations<br>114<br>docs citations | 2,984 30<br>citations h-index |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Review of the roles of conjugated linoleic acid in health and disease. Journal of Functional Foods, 2015, 15, 314-325.                                                                                    | 1.6 | 185       |
| 2  | Genome Characterization of the Oleaginous Fungus Mortierella alpina. PLoS ONE, 2011, 6, e28319.                                                                                                           | 1.1 | 133       |
| 3  | Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella<br>alpina. BMC Systems Biology, 2015, 9, 1.                                                            | 3.0 | 131       |
| 4  | Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Scientific Reports, 2017, 7, 45840.                                                                                                | 1.6 | 127       |
| 5  | Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnology Letters, 2013, 35, 2091-2098.                            | 1.1 | 89        |
| 6  | Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase<br>from Mus musculus. Journal of Biotechnology, 2014, 192, 78-84.                                    | 1.9 | 87        |
| 7  | Role of Malic Enzyme during Fatty Acid Synthesis in the Oleaginous Fungus Mortierella alpina. Applied<br>and Environmental Microbiology, 2014, 80, 2672-2678.                                             | 1.4 | 87        |
| 8  | Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi.<br>Scientific Reports, 2015, 5, 11247.                                                          | 1.6 | 83        |
| 9  | Synthesis of conjugated linoleic acid by the linoleate isomerase complex in food-derived lactobacilli.<br>Journal of Applied Microbiology, 2014, 117, 430-439.                                            | 1.4 | 73        |
| 10 | Bacterial conjugated linoleic acid production and their applications. Progress in Lipid Research, 2017, 68, 26-36.                                                                                        | 5.3 | 71        |
| 11 | Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor<br>circinelloides: An Explanation for the High Oleaginicity of Strain WJ11. PLoS ONE, 2015, 10, e0128396.      | 1.1 | 66        |
| 12 | n-3 Polyunsaturated Fatty Acids and Their Role in Cancer Chemoprevention. Current Pharmacology<br>Reports, 2015, 1, 283-294.                                                                              | 1.5 | 65        |
| 13 | Bifidobacterium breve CCFM683 could ameliorate DSS-induced colitis in mice primarily via conjugated linoleic acid production and gut microbiota modulation. Journal of Functional Foods, 2018, 49, 61-72. | 1.6 | 63        |
| 14 | Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases.<br>Biotechnology Letters, 2013, 35, 75-81.                                                             | 1.1 | 57        |
| 15 | Metabolic Engineering of Mortierella alpina for Enhanced Arachidonic Acid Production through the<br>NADPH-Supplying Strategy. Applied and Environmental Microbiology, 2016, 82, 3280-3288.                | 1.4 | 56        |
| 16 | Molecular tools for gene manipulation in filamentous fungi. Applied Microbiology and<br>Biotechnology, 2017, 101, 8063-8075.                                                                              | 1.7 | 54        |
| 17 | Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microbial Cell Factories, 2016, 15, 35.      | 1.9 | 53        |
| 18 | Complete Genome Sequence of a High Lipid-Producing Strain of Mucor circinelloides WJ11 and<br>Comparative Genome Analysis with a Low Lipid-Producing Strain CBS 277.49. PLoS ONE, 2015, 10,<br>e0137543.  | 1.1 | 52        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | 13 C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.<br>Bioresource Technology, 2015, 197, 23-29.                                                                                                                                                                                                                   | 4.8 | 51        |
| 20 | Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microbial Cell Factories, 2016, 15, 117.                                                                                                                                                                                         | 1.9 | 45        |
| 21 | ï‰3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological<br>use. Applied Microbiology and Biotechnology, 2013, 97, 10255-10262.                                                                                                                                                                                      | 1.7 | 42        |
| 22 | Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Applied<br>Microbiology and Biotechnology, 2016, 100, 1297-1305.                                                                                                                                                                                                     | 1.7 | 42        |
| 23 | Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnology Letters, 2014, 36, 1827-1834.                                                                                                                                                          | 1.1 | 41        |
| 24 | Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and<br>Micromonas pusilla. Journal of Lipid Research, 2015, 56, 2309-2321.                                                                                                                                                                                           | 2.0 | 36        |
| 25 | Lactobacillus plantarum ZS2058 produces CLA to ameliorate DSS-induced acute colitis in mice. RSC<br>Advances, 2016, 6, 14457-14464.                                                                                                                                                                                                                              | 1.7 | 35        |
| 26 | Changes in microbial community during Chinese traditional soybean paste fermentation. International<br>Journal of Food Science and Technology, 2009, 44, 2526-2530.                                                                                                                                                                                              | 1.3 | 34        |
| 27 | Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source. Microbial Cell Factories, 2015, 14, 205.                                                                                                                                                                                                             | 1.9 | 34        |
| 28 | Role of pentose phosphate pathway in lipid accumulation of oleaginous fungus Mucor circinelloides.<br>RSC Advances, 2015, 5, 97658-97664.                                                                                                                                                                                                                        | 1.7 | 34        |
| 29 | A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering. Microbial Cell Factories, 2016, 15, 99.                                                                                                                                              | 1.9 | 33        |
| 30 | Fatty acid metabolism: Implications for diet, genetic variation, and disease. Food Bioscience, 2013, 4,<br>1-12.                                                                                                                                                                                                                                                 | 2.0 | 32        |
| 31 | Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnology Advances, 2022, 54, 107794.                                                                                                                                                                                                              | 6.0 | 30        |
| 32 | <i>Bifidobacterium longum</i> Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing<br>Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut<br>Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-I®B Signaling Pathway. Journal of<br>Agricultural and Food Chemistry, 2021, 69, 14593-14608. | 2.4 | 29        |
| 33 | Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus<br>Mortierella alpina. Microbiology (United Kingdom), 2011, 157, 3059-3070.                                                                                                                                                                                   | 0.7 | 28        |
| 34 | Dietary supplementation of α-linolenic acid induced conversion of n-3 LCPUFAs and reduced prostate cancer growth in a mouse model. Lipids in Health and Disease, 2017, 16, 136.                                                                                                                                                                                  | 1.2 | 28        |
| 35 | Dietary intake of n-3 PUFAs modifies the absorption, distribution and bioavailability of fatty acids in the mouse gastrointestinal tract. Lipids in Health and Disease, 2017, 16, 10.                                                                                                                                                                            | 1.2 | 27        |
| 36 | Evaluation of metabolome sample preparation and extraction methodologies for oleaginous filamentous fungi Mortierella alpina. Metabolomics, 2019, 15, 50.                                                                                                                                                                                                        | 1.4 | 27        |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Time-resolved multi-omics analysis reveals the role of nutrient stress-induced resource reallocation<br>for TAG accumulation in oleaginous fungus Mortierella alpina. Biotechnology for Biofuels, 2020, 13,<br>116.                                                    | 6.2 | 26        |
| 38 | Application of a ω-3 Desaturase with an Arachidonic Acid Preference to Eicosapentaenoic Acid<br>Production in Mortierella alpina. Frontiers in Bioengineering and Biotechnology, 2017, 5, 89.                                                                          | 2.0 | 25        |
| 39 | Expression and Purification of Integral Membrane Fatty Acid Desaturases. PLoS ONE, 2013, 8, e58139.                                                                                                                                                                    | 1.1 | 24        |
| 40 | Characterization of an Omega-3 Desaturase From Phytophthora parasitica and Application for<br>Eicosapentaenoic Acid Production in Mortierella alpina. Frontiers in Microbiology, 2018, 9, 1878.                                                                        | 1.5 | 24        |
| 41 | Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in<br>Escherichia coli. Applied Microbiology and Biotechnology, 2012, 94, 1061-1068.                                                                                           | 1.7 | 23        |
| 42 | Characterization of the triple-component linoleic acid isomerase inLactobacillus plantarumZS2058 by genetic manipulation. Journal of Applied Microbiology, 2017, 123, 1263-1273.                                                                                       | 1.4 | 23        |
| 43 | Clove extract functions as a natural fatty acid synthesis inhibitor and prevents obesity in a mouse model. Food and Function, 2017, 8, 2847-2856.                                                                                                                      | 2.1 | 23        |
| 44 | A new potential secretion pathway for recombinant proteins in Bacillus subtilis. Microbial Cell<br>Factories, 2015, 14, 179.                                                                                                                                           | 1.9 | 22        |
| 45 | Comparative Proteome Analysis between High Lipid-Producing Strain <i>Mucor circinelloides</i> WJ11<br>and Low Lipid-Producing Strain CBS 277.49. Journal of Agricultural and Food Chemistry, 2017, 65,<br>5074-5082.                                                   | 2.4 | 22        |
| 46 | Ultra Performance Liquid Chromatography–Q Exactive Orbitrap/Mass Spectrometry-Based Lipidomics<br>Reveals the Influence of Nitrogen Sources on Lipid Biosynthesis of <i>Mortierella alpina</i> . Journal<br>of Agricultural and Food Chemistry, 2019, 67, 10984-10993. | 2.4 | 22        |
| 47 | Effects of 20 Standard Amino Acids on the Growth, Total Fatty Acids Production, and Î <sup>3</sup> -Linolenic Acid<br>Yield in Mucor circinelloides. Current Microbiology, 2014, 69, 899-908.                                                                          | 1.0 | 21        |
| 48 | Role of Adenosine Monophosphate Deaminase during Fatty Acid Accumulation in Oleaginous Fungus<br><i>Mortierella alpina</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 9551-9559.                                                                          | 2.4 | 21        |
| 49 | The Role of Clyceraldehyde-3-Phosphate Dehydrogenases in NADPH Supply in the Oleaginous<br>Filamentous Fungus Mortierella alpina. Frontiers in Microbiology, 2020, 11, 818.                                                                                            | 1.5 | 21        |
| 50 | Mining bifidobacteria from the neonatal gastrointestinal tract for conjugated linolenic acid production. Bioengineered, 2017, 8, 232-238.                                                                                                                              | 1.4 | 20        |
| 51 | c9, t11, c15-CLNA and t9, t11, c15-CLNA from <i>Lactobacillus plantarum</i> ZS2058 Ameliorate Dextran<br>Sodium Sulfate-Induced Colitis in Mice. Journal of Agricultural and Food Chemistry, 2020, 68,<br>3758-3769.                                                   | 2.4 | 20        |
| 52 | Lipase genes in <i>Mucor circinelloides</i> : identification, sub-cellular location, phylogenetic<br>analysis and expression profiling during growth and lipid accumulation. Journal of Industrial<br>Microbiology and Biotechnology, 2016, 43, 1467-1480.             | 1.4 | 18        |
| 53 | Distinct Gut Microbiota Induced by Different Fat-to-Sugar-Ratio High-Energy Diets Share Similar<br>Pro-obesity Genetic and Metabolite Profiles in Prediabetic Mice. MSystems, 2019, 4, .                                                                               | 1.7 | 18        |
| 54 | The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients, 2020, 12, 2507.                                                                 | 1.7 | 16        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Role of <i>g</i> 6 <i>pdh</i> and <i>leuB</i> on Lipid Accumulation in <i>Mucor circinelloides</i> .<br>Journal of Agricultural and Food Chemistry, 2020, 68, 4245-4251.                                                                  | 2.4 | 16        |
| 56 | Two-stage pH control combined with oxygen-enriched air strategies for the highly efficient<br>production of EPA by Mortierella alpina CCFM698 with fed-batch fermentation. Bioprocess and<br>Biosystems Engineering, 2020, 43, 1725-1733. | 1.7 | 15        |
| 57 | Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. International<br>Journal of Food Microbiology, 2022, 369, 109593.                                                                                        | 2.1 | 15        |
| 58 | Optimization of the quenching and extraction procedures for a metabolomic analysis of Lactobacillus plantarum. Analytical Biochemistry, 2018, 557, 62-68.                                                                                 | 1.1 | 14        |
| 59 | Role of 10-hydroxy-cis-12-octadecenic acid in transforming linoleic acid into conjugated linoleic acid by bifidobacteria. Applied Microbiology and Biotechnology, 2019, 103, 7151-7160.                                                   | 1.7 | 14        |
| 60 | The role of a xylose isomerase pathway in the conversion of xylose to lipid in Mucor circinelloides.<br>RSC Advances, 2016, 6, 77944-77952.                                                                                               | 1.7 | 13        |
| 61 | Substrate specificity and membrane topologies of the iron-containing ω3 and ω6 desaturases from<br>Mortierella alpina. Applied Microbiology and Biotechnology, 2018, 102, 211-223.                                                        | 1.7 | 13        |
| 62 | Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk. LWT - Food Science and Technology, 2020, 120, 108940.                                         | 2.5 | 13        |
| 63 | An efficient strategy for screening polyunsaturated fatty acid-producing oleaginous filamentous<br>fungi from soil. Journal of Microbiological Methods, 2019, 158, 80-85.                                                                 | 0.7 | 12        |
| 64 | Metabolomics analysis reveals the role of oxygen control in the nitrogen limitation induced lipid accumulation in Mortierella alpina. Journal of Biotechnology, 2021, 325, 325-333.                                                       | 1.9 | 12        |
| 65 | Advances in improving the biotechnological application of oleaginous fungus Mortierella alpina.<br>Applied Microbiology and Biotechnology, 2021, 105, 6275-6289.                                                                          | 1.7 | 12        |
| 66 | Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme. Molecular Diversity, 2013, 17, 371-382.                                                                                        | 2.1 | 11        |
| 67 | Complete genome sequence of Lactobacillus plantarum ZS2058, a probiotic strain with high conjugated linoleic acid production ability. Journal of Biotechnology, 2015, 214, 212-213.                                                       | 1.9 | 11        |
| 68 | Production of conjugated linoleic acid by heterologous expression of linoleic acid isomerase in oleaginous fungus Mortierella alpina. Biotechnology Letters, 2015, 37, 1983-1992.                                                         | 1,1 | 11        |
| 69 | Optimization of Agrobacterium tumefaciens-mediated transformation method of oleaginous<br>filamentous fungus Mortierella alpina on co-cultivation materials choice. Journal of Microbiological<br>Methods, 2018, 152, 179-185.            | 0.7 | 11        |
| 70 | Bioinformatical analysis and preliminary study of the role of lipase in lipid metabolism in Mucor circinelloides. RSC Advances, 2016, 6, 60673-60682.                                                                                     | 1.7 | 10        |
| 71 | Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation. Biotechnology Letters, 2017, 39, 439-446.                                               | 1.1 | 10        |
| 72 | Molecular mechanism of substrate preference for ω-3 fatty acid desaturase from Mortierella alpina by mutational analysis and molecular docking. Applied Microbiology and Biotechnology, 2018, 102, 9679-9689.                             | 1.7 | 10        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic determinates for conjugated linolenic acid production in Lactobacillus plantarum ZS2058.<br>Journal of Applied Microbiology, 2020, 128, 191-201.                                                                                    | 1.4 | 10        |
| 74 | Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution,<br>function with substrate specificities and biotechnological use. Applied Microbiology and<br>Biotechnology, 2020, 104, 9947-9963.      | 1.7 | 10        |
| 75 | Synergistic Effect of Eugenol and Probiotic Lactobacillus Plantarum Zs2058 against Salmonella<br>Infection in C57bl/6 Mice. Nutrients, 2020, 12, 1611.                                                                                      | 1.7 | 10        |
| 76 | Antiproliferation Activity and Mechanism of c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 on Colon Cancer Cells. Molecules, 2020, 25, 1225.                                                                   | 1.7 | 10        |
| 77 | Substrate specificity ofMortierella alpinaî"9-III fatty acid desaturase and its value for the production of<br>omega-9 MUFA. European Journal of Lipid Science and Technology, 2016, 118, 753-760.                                          | 1.0 | 9         |
| 78 | Characterization of an fungal l-fucokinase involved in <i>Mortierella alpina</i> GDP-l-fucose salvage pathway. Glycobiology, 2016, 26, 880-887.                                                                                             | 1.3 | 9         |
| 79 | Effects of <i>Agrobacterium tumefaciens</i> strain types on the <i>Agrobacteriumâ€</i> mediated<br>transformation efficiency of filamentous fungus <i>Mortierella alpina</i> . Letters in Applied<br>Microbiology, 2020, 70, 388-393.       | 1.0 | 9         |
| 80 | Role of beta-isopropylmalate dehydrogenase in lipid biosynthesis of the oleaginous fungus<br>Mortierella alpina. Fungal Genetics and Biology, 2021, 152, 103572.                                                                            | 0.9 | 9         |
| 81 | Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria<br>Characterized by Different Conjugated Linoleic Acid-Producing Abilities. Journal of Agricultural and<br>Food Chemistry, 2021, 69, 11311-11321. | 2.4 | 9         |
| 82 | Role of dihydrofolate reductase in tetrahydrobiopterin biosynthesis and lipid metabolism in the oleaginous fungus Mortierella alpina. Microbiology (United Kingdom), 2016, 162, 1544-1553.                                                  | 0.7 | 9         |
| 83 | The relationship between amino acid and lipid metabolism in oleaginous eukaryotic microorganism.<br>Applied Microbiology and Biotechnology, 2022, 106, 3405-3417.                                                                           | 1.7 | 9         |
| 84 | Carbohydrate analysis of Mortierella alpina by colorimetry and HPLC–ELSD to reveal accumulation differences of sugar and lipid. Biotechnology Letters, 2021, 43, 1289-1301.                                                                 | 1.1 | 8         |
| 85 | Production of trans-10,cis-12-conjugated linoleic acid using permeabilized whole-cell biocatalyst of<br>Yarrowia lipolytica. Biotechnology Letters, 2016, 38, 1917-1922.                                                                    | 1.1 | 7         |
| 86 | Mortierella alpina feed supplementation enriched hen eggs with DHA and AA. RSC Advances, 2016, 6, 1694-1699.                                                                                                                                | 1.7 | 7         |
| 87 | Characterization and molecular docking of new Δ17 fatty acid desaturase genes from <i>Rhizophagus<br/>irregularis</i> and <i>Octopus bimaculoides</i> . RSC Advances, 2019, 9, 6871-6880.                                                   | 1.7 | 7         |
| 88 | Tetrahydrobiopterin Plays a Functionally Significant Role in Lipogenesis in the Oleaginous Fungus<br>Mortierella alpina. Frontiers in Microbiology, 2020, 11, 250.                                                                          | 1.5 | 7         |
| 89 | Extract of Syzygium aromaticum suppress eEF1A protein expression and fungal growth. Journal of Applied Microbiology, 2017, 123, 80-91.                                                                                                      | 1.4 | 6         |
| 90 | Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina. Biotechnology Letters, 2021, 43, 1455-1466.                                                                       | 1.1 | 6         |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The role of acyl-CoA thioesterase ACOT8I in mediating intracellular lipid metabolism in oleaginous<br>fungus Mortierella alpina. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 281-291.                                               | 1.4 | 5         |
| 92  | Structural Determinants of Substrate Specificity of Omega-3 Desaturases from Mortierella alpina and<br>Rhizophagus irregularis by Domain-Swapping and Molecular Docking. International Journal of<br>Molecular Sciences, 2019, 20, 1603.                | 1.8 | 5         |
| 93  | Improved Lipogenesis in <i>Mortierella alpina</i> by Abolishing the <i>Snf4-</i> Mediated Energy-Saving<br>Mode under Low Glucose. Journal of Agricultural and Food Chemistry, 2020, 68, 10787-10798.                                                   | 2.4 | 5         |
| 94  | Linoleic acid induces different metabolic modes in two Bifidobacterium breve strains with different conjugated linoleic acid-producing abilities. LWT - Food Science and Technology, 2021, 142, 110974.                                                 | 2.5 | 5         |
| 95  | Cloning, expression, and identification of a novel class IIa bacteriocin in the Escherichia coli cell-free protein expression system. Biotechnology Letters, 2012, 34, 359-364.                                                                         | 1.1 | 4         |
| 96  | Increased fatty acid accumulation following overexpression of glycerolâ€3â€phosphate dehydrogenase<br>and suppression of βâ€oxidation in oleaginous fungus Mortierella alpina. European Journal of Lipid<br>Science and Technology, 2017, 119, 1600113. | 1.0 | 4         |
| 97  | Potential Functions of the Gastrointestinal Microbiome Inhabiting the Length of the Rat Digest Tract.<br>International Journal of Molecular Sciences, 2019, 20, 1232.                                                                                   | 1.8 | 4         |
| 98  | Functional characterization of two diacylglycerol acyltransferase 1 genes in <i>Mortierella alpina</i> . Letters in Applied Microbiology, 2022, 74, 194-203.                                                                                            | 1.0 | 4         |
| 99  | Biochemical characterization of an isoform of GDP-d-mannose-4,6-dehydratase from Mortierella alpina. Biotechnology Letters, 2016, 38, 1761-1768.                                                                                                        | 1.1 | 3         |
| 100 | Application of the cbh1 promoter in <i>Mortierella alpina</i> and optimization of induction conditions. Letters in Applied Microbiology, 2020, 71, 164-170.                                                                                             | 1.0 | 3         |
| 101 | The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina.<br>Microbiology (United Kingdom), 2021, 167, .                                                                                                        | 0.7 | 3         |
| 102 | Characterization of NAD+/NADP+-Specific Isocitrate Dehydrogenases From Oleaginous Fungus<br>Mortierella alpina Involved in Lipid Accumulation. Frontiers in Nutrition, 2021, 8, 746342.                                                                 | 1.6 | 3         |
| 103 | Application of high EPA-producing Mortierella alpina in laying hen feed for egg DHA accumulation.<br>RSC Advances, 2018, 8, 39005-39012.                                                                                                                | 1.7 | 2         |
| 104 | The role of MTHFDL in mediating intracellular lipogenesis in oleaginous Mortierella alpina.<br>Microbiology (United Kingdom), 2020, 166, 617-623.                                                                                                       | 0.7 | 2         |
| 105 | Consensus mutagenesis and computational simulation provide insight into the desaturation catalytic mechanism for delta 6 fatty acid desaturase. Biochemical and Biophysical Research Communications, 2022, 586, 74-80.                                  | 1.0 | 2         |
| 106 | SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and<br>Carbohydrates in <i>Mortierella alpina</i> . Journal of Agricultural and Food Chemistry, 2021, 69,<br>13849-13858.                                            | 2.4 | 2         |
| 107 | Autophagy Improves ARA-Rich TAG Accumulation in <i>Mortierella alpina</i> by Regulating Resource<br>Allocation. Microbiology Spectrum, 2022, 10, e0130021.                                                                                              | 1.2 | 2         |
| 108 | Characterization and Molecular Mechanism of a Novel Cytochrome <i>b</i> sub>5 Reductase with NAD(P)H Specificity from <i>Mortierella alpina</i> Journal of Agricultural and Food Chemistry, 2022, 70, 5186-5196.                                        | 2.4 | 2         |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Linoleate Isomerase Complex Contributes to Metabolism and Remission of DSS-Induced Colitis in Mice<br>of <i>Lactobacillus plantarum</i> ZS2058. Journal of Agricultural and Food Chemistry, 2021, 69,<br>8160-8171. | 2.4 | 1         |
| 110 | Production of GDP-l-fucose from exogenous fucose through the salvage pathway in Mortierella alpina. RSC Advances, 2016, 6, 46308-46316.                                                                             | 1.7 | 0         |
| 111 | Molecular mechanism of interaction between fatty acid delta 6 desaturase and acyl-CoA by computational prediction. AMB Express, 2022, 12, .                                                                         | 1.4 | 0         |