Kyoji Tsuchikama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3524982/publications.pdf

Version: 2024-02-01

28 papers

2,035 citations

394421 19 h-index 477307 29 g-index

29 all docs

29 docs citations

29 times ranked 2067 citing authors

#	Article	IF	CITATIONS
1	Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein and Cell, 2018, 9, 33-46.	11.0	494
2	Recent advances in enantioselective $[2+2+2]$ cycloaddition. Organic and Biomolecular Chemistry, 2008, 6, 1317.	2.8	284
3	Cationic iridium–BINAP complex-catalyzed addition of aryl ketones to alkynes and alkenes via directed C–H bond cleavage. Journal of Organometallic Chemistry, 2008, 693, 3939-3942.	1.8	152
4	Glutamic acid–valine–citrulline linkers ensure stability and efficacy of antibody–drug conjugates in mice. Nature Communications, 2018, 9, 2512.	12.8	119
5	Cationic Ir(I)-Catalyzed sp ³ Câ^'H Bond Alkenylation of Amides with Alkynes. Organic Letters, 2009, 11, 1821-1823.	4.6	112
6	Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance. Nature Communications, 2021, 12, 3528.	12.8	108
7	Iridiumâ€Catalyzed Selective Synthesis of 4â€Substituted Benzofurans and Indoles <i>via</i> Directed Cyclodehydration. Advanced Synthesis and Catalysis, 2009, 351, 2850-2854.	4.3	98
8	Highly Enantioselective Construction of a Chiral Spirocyclic Structure by the $[2 + 2 + 2]$ Cycloaddition of Diynes andexo-Methylene Cyclic Compounds. Journal of the American Chemical Society, 2006, 128, 13686-13687.	13.7	89
9	Rh-Catalyzed Cyclization of Diynes and Enynes Initiated by Carbonyl-Directed Activation of Aromatic and Vinylic Câ ⁻ 'H Bonds. Organic Letters, 2007, 9, 3097-3099.	4.6	89
10	Enantioselective intramolecular [2+2+2] cycloaddition of triynes for the synthesis of atropisomeric chiral ortho-diarylbenzene derivatives. Tetrahedron: Asymmetry, 2006, 17, 614-619.	1.8	71
11	Enzymatic conjugation using branched linkers for constructing homogeneous antibody–drug conjugates with high potency. Organic and Biomolecular Chemistry, 2017, 15, 5635-5642.	2.8	67
12	Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunology Research, 2019, 7, 1244-1257.	3.4	51
13	Rhodium-catalyzed enantioselective [2+2+2] cycloaddition of diynes with unfunctionalized alkenes. Tetrahedron, 2007, 63, 12853-12859.	1.9	39
14	Modulating Cocaine Vaccine Potency through Hapten Fluorination. Journal of the American Chemical Society, 2013, 135, 2971-2974.	13.7	37
15	Cationic Ir(I)-Catalyzed sp \hat{A}^3 C-H Bond Alkenylation of Ureas with Alkynes for the Synthesis of 2,3-Disubstituted Indoles. Synlett, 2011, 2011, 2171-2176.	1.8	32
16	C4-Alkoxy-HPD: A Potent Class of Synthetic Modulators Surpassing Nature in Al-2 Quorum Sensing. Journal of the American Chemical Society, 2012, 134, 13562-13564.	13.7	30
17	LILRB4-targeting Antibody–Drug Conjugates for the Treatment of Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2020, 19, 2330-2339.	4.1	29
18	Transglutaminase-Mediated Conjugations. Methods in Molecular Biology, 2020, 2078, 71-82.	0.9	24

#	Article	IF	CITATIONS
19	Probing Autoinducer-2 Based Quorum Sensing: The Biological Consequences of Molecules Unable To Traverse Equilibrium States. Journal of Organic Chemistry, 2011, 76, 6981-6989.	3.2	23
20	Total Synthesis of the Monomeric Unit of Lomaiviticin A. Journal of the American Chemical Society, 2020, 142, 20201-20207.	13.7	18
21	Truncated Autoinducing Peptide Conjugates Selectively Recognize and Kill <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2017, 3, 406-410.	3.8	12
22	Sequential Catalytic Reactions for the Synthesis of Benzofulvenes Using an Iridium Complex with Dual Function. Synlett, 2010, 2010, 97-100.	1.8	11
23	Antibody Clicking as a Strategy to Modify Antibody Functionalities on the Surface of Targeted Cells. Journal of the American Chemical Society, 2020, 142, 15644-15648.	13.7	11
24	Cationic Iridium-Catalyzed Synthesis Initiated by the Cleavage of C-H, N-H, and C-O Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 1182-1194.	0.1	10
25	Rhodium-Complex-Catalyzed [2+2+2] Cycloaddition of Diynes and Carbonyl Compounds. Synlett, 2007, 2007, 1395-1398.	1.8	9
26	Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorganic and Medicinal Chemistry, 2021, 32, 116013.	3.0	7
27	Homogeneous antibody–angiopep 2 conjugates for effective brain targeting. RSC Advances, 2022, 12, 3359-3364.	3.6	5
28	The Reaction of Butatrienolates with Aldehydes for the Syntheses of $\hat{l}\pm$ -Vinylidene Acylsilanes. Bulletin of the Chemical Society of Japan, 2004, 77, 1937-1938.	3.2	1