List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352484/publications.pdf Version: 2024-02-01

		3334	2629
302	39,777	91	194
papers	citations	h-index	g-index
315	315	315	26328
all docs	docs citations	times ranked	citing authors

STEDHEN I CALL

#	Article	IF	CITATIONS
1	lgE antibodies increase honeybee venom responsiveness and detoxification efficiency of mast cells. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 499-512.	5.7	15
2	Mast cells partly contribute to allergic enteritis development: Findings in two different mast cellâ€deficient mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1051-1054.	5.7	1
3	Gastrointestinal γδT cells reveal differentially expressed transcripts and enriched pathways during peanut oral immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1606-1610.	5.7	3
4	Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system. Lab on A Chip, 2022, 22, 1690-1701.	6.0	8
5	An optimized protocol for phenotyping human granulocytes by mass cytometry. STAR Protocols, 2022, 3, 101280.	1.2	2
6	Drug-induced mast cell eradication: AÂnovel approach to treat mast cell activation disorders?. Journal of Allergy and Clinical Immunology, 2022, 149, 1866-1874.	2.9	18
7	KIT as a master regulator of the mast cell lineage. Journal of Allergy and Clinical Immunology, 2022, 149, 1845-1854.	2.9	28
8	Dynamin-related protein 1 differentially regulates FcεRI- and substance P-induced mast cell activation. Journal of Allergy and Clinical Immunology, 2022, 150, 1228-1231.e5.	2.9	2
9	Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: The Markers of Nut Allergy Study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1800-1812.	5.7	37
10	Increased diversity of gut microbiota during active oral immunotherapy in peanutâ€allergic adults. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 927-930.	5.7	20
11	Omalizumab in "non–IgE-mediated―diseases. Journal of Allergy and Clinical Immunology, 2021, 147, 1207-1208.	2.9	4
12	E-cadherin is regulated by GATA-2 and marks the early commitment of mouse hematopoietic progenitors to the basophil and mast cell fates. Science Immunology, 2021, 6, .	11.9	25
13	Transcriptome programming of ILâ€3â€dependent bone marrowâ€derived cultured mast cells by stem cell factor (SCF). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2288-2291.	5.7	7
14	Immune changes beyond Th2 pathways during rapid multifood immunotherapy enabled with omalizumab. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2809-2826.	5.7	18
15	Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3789-3797.	5.7	45
16	The role of Sp140 revealed in IgE and mast cell responses in Collaborative Cross mice. JCI Insight, 2021, 6, .	5.0	8
17	Letter by Varricchi et al Regarding Article, "Role of IgE-FcεR1 in Pathological Cardiac Remodeling and Dysfunction― Circulation, 2021, 144, e214-e215.	1.6	0
18	Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System. JAMA Network Open, 2021, 4, e2125524.	5.9	103

#	Article	IF	CITATIONS
19	Neutrophil-specific gain-of-function mutations in <i>Nlrp3</i> promote development of cryopyrin-associated periodic syndrome. Journal of Experimental Medicine, 2021, 218, .	8.5	29
20	Updated Diagnostic Criteria and Classification of Mast Cell Disorders: A Consensus Proposal. HemaSphere, 2021, 5, e646.	2.7	128
21	Proposed Diagnostic Criteria and Classification of Canine Mast Cell Neoplasms: A Consensus Proposal. Frontiers in Veterinary Science, 2021, 8, 755258.	2.2	16
22	Epithelial RABGEF1 deficiency promotes intestinal inflammation by dysregulating intrinsic MYD88-dependent innate signaling. Mucosal Immunology, 2020, 13, 96-109.	6.0	4
23	Conflicting verdicts on peanut oral immunotherapy from the Institute for Clinical and Economic Review and US Food and Drug Administration Advisory Committee: Where do we go from here?. Journal of Allergy and Clinical Immunology, 2020, 145, 1153-1156.	2.9	17
24	Trends in egg specific immunoglobulin levels during natural tolerance and oral immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1454-1456.	5.7	6
25	Development of multiple features of antigen-induced asthma pathology in a new strain of mast cell deficient BALB/c-Kit mice. Laboratory Investigation, 2020, 100, 516-526.	3.7	9
26	Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. Journal of Allergy and Clinical Immunology, 2020, 145, 885-896.e6.	2.9	86
27	Mass Cytometry Phenotyping of Human Granulocytes Reveals Novel Basophil Functional Heterogeneity. IScience, 2020, 23, 101724.	4.1	19
28	Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy. Clinical Immunology, 2020, 219, 108568.	3.2	22
29	IgE Effector Mechanisms, in Concert with Mast Cells, Contribute to Acquired Host Defense against Staphylococcus aureus. Immunity, 2020, 53, 793-804.e9.	14.3	38
30	Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Theranostics, 2020, 10, 10743-10768.	10.0	107
31	Oral Immunotherapy and Basophil and Mast Cell Reactivity in Food Allergy. Frontiers in Immunology, 2020, 11, 602660.	4.8	17
32	A highly sensitive bioluminescent method for measuring allergenâ€specific IgE in microliter samples. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2952-2956.	5.7	16
33	Origins and clonal convergence of gastrointestinal IgE ⁺ B cells in human peanut allergy. Science Immunology, 2020, 5, .	11.9	88
34	Mast cells and IgE in defense against lethality of venoms: Possible "benefit―of allergy. Allergo Journal International, 2020, 29, 46-62.	2.0	22
35	Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRIâ€mediated signaling. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1966-1978.	5.7	92
36	RNA-Seq of Gastrointestinal Biopsies During Oral Immunotherapy Reveals Changes in IgA Pathway. Journal of Allergy and Clinical Immunology, 2020, 145, AB132.	2.9	1

#	Article	IF	CITATIONS
37	Rapid identification of human mast cell degranulation regulators using functional genomics coupled to high-resolution confocal microscopy. Nature Protocols, 2020, 15, 1285-1310.	12.0	20
38	The TWEAK/Fn14 axis in anaphylactic shock. Journal of Allergy and Clinical Immunology, 2020, 145, 491-493.	2.9	2
39	Identification of crossâ€reactive allergens in cashew―and pistachioâ€allergic children during oral immunotherapy. Pediatric Allergy and Immunology, 2020, 31, 709-714.	2.6	4
40	Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annual Review of Immunology, 2020, 38, 49-77.	21.8	178
41	Microfluidic methods for precision diagnostics in food allergy. Biomicrofluidics, 2020, 14, 021503.	2.4	5
42	MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Science Advances, 2019, 5, eaax5851.	10.3	252
43	Future Needs in Mast Cell Biology. International Journal of Molecular Sciences, 2019, 20, 4397.	4.1	83
44	Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet, The, 2019, 394, 1437-1449.	13.7	215
45	Obituary for Teruko Ishizaka (1926–2019). Allergology International, 2019, 68, 399-400.	3.3	0
46	ICER report for peanut OIT comes up short. Annals of Allergy, Asthma and Immunology, 2019, 123, 430-432.	1.0	15
47	A Phase 2 Randomized Controlled Multisite Study Using Omalizumab-facilitated Rapid Desensitization to Test Continued vs Discontinued Dosing in Multifood Allergic Individuals. EClinicalMedicine, 2019, 7, 27-38.	7.1	77
48	Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nature Immunology, 2019, 20, 129-140.	14.5	56
49	Meningeal Mast Cells as Key Effectors of Stroke Pathology. Frontiers in Cellular Neuroscience, 2019, 13, 126.	3.7	22
50	Immune Mechanism of Desensitization through Rapid Multi-food Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 143, AB254.	2.9	0
51	House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. Nature Immunology, 2019, 20, 1435-1443.	14.5	196
52	Complexities in analyzing human basophil responses to autoantibodies to IgE or FcεRI. Journal of Allergy and Clinical Immunology, 2019, 143, 932-934.	2.9	4
53	Recruiting CD33 on mast cells to inhibit IgE-mediated mast cell–dependent anaphylaxis. Journal of Clinical Investigation, 2019, 129, 955-957.	8.2	3
54	IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. ELife, 2019, 8, .	6.0	74

#	Article	IF	CITATIONS
55	Adoptive Transfer of Basophils Enriched from Mouse Spleen. Bio-protocol, 2019, 9, e3416.	0.4	0
56	Thirdhand smoke component can exacerbate a mouse asthma model through mast cells. Journal of Allergy and Clinical Immunology, 2018, 142, 1618-1627.e9.	2.9	24
57	Mast cells as sources of cytokines, chemokines, and growth factors. Immunological Reviews, 2018, 282, 121-150.	6.0	492
58	lsotype-specific agglutination-PCR (ISAP): AÂsensitive and multiplex method for measuring allergen-specific IgE. Journal of Allergy and Clinical Immunology, 2018, 141, 1901-1904.e15.	2.9	13
59	Anti-IgE treatment with oral immunotherapy in multifood allergic participants: a double-blind, randomised, controlled trial. The Lancet Gastroenterology and Hepatology, 2018, 3, 85-94.	8.1	177
60	Food allergy and omics. Journal of Allergy and Clinical Immunology, 2018, 141, 20-29.	2.9	59
61	Development of a tool predicting severity of allergic reaction during peanut challenge. Annals of Allergy, Asthma and Immunology, 2018, 121, 69-76.e2.	1.0	57
62	Human mast cells as antigen-presenting cells: When is this role important inÂvivo?. Journal of Allergy and Clinical Immunology, 2018, 141, 92-93.	2.9	24
63	Analysis of a Large Standardized Food Challenge Data Set to Determine Predictors of Positive Outcome Across Multiple Allergens. Frontiers in Immunology, 2018, 9, 2689.	4.8	23
64	Baseline Gastrointestinal Eosinophilia Is Common in Oral Immunotherapy Subjects With IgE-Mediated Peanut Allergy. Frontiers in Immunology, 2018, 9, 2624.	4.8	49
65	Eliciting Dose and Safety Outcomes From a Large Dataset of Standardized Multiple Food Challenges. Frontiers in Immunology, 2018, 9, 2057.	4.8	40
66	Mary Hewitt Loveless, MD. Annals of Allergy, Asthma and Immunology, 2018, 121, 268-271.	1.0	2
67	Imaging FITC-dextran as a Reporter for Regulated Exocytosis. Journal of Visualized Experiments, 2018, , .	0.3	5
68	Effect of Dietary Fiber and Metabolites on Mast Cell Activation and Mast Cell-Associated Diseases. Frontiers in Immunology, 2018, 9, 1067.	4.8	34
69	Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Frontiers in Immunology, 2018, 9, 1275.	4.8	38
70	lgG subclasses determine pathways of anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 269-280.e7.	2.9	78
71	Differences in the Importance of Mast Cells, Basophils, IgE, and IgG versus That of CD4 ⁺ T Cells and ILC2 Cells in Primary and Secondary Immunity to Strongyloides venezuelensis. Infection and Immunity, 2017, 85, .	2.2	62
72	Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell, 2017, 168, 1041-1052.e18.	28.9	70

#	Article	IF	CITATIONS
73	Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Research, 2017, 77, 1261-1270.	0.9	210
74	Mast Cells and KIT as Potential Therapeutic Targets in Severe Asthma. New England Journal of Medicine, 2017, 376, 1983-1984.	27.0	18
75	Reply. Journal of Allergy and Clinical Immunology, 2017, 139, 2029-2031.	2.9	1
76	A new fluorescent-avidin–based method for quantifying basophil activation in whole blood. Journal of Allergy and Clinical Immunology, 2017, 140, 1202-1206.e3.	2.9	19
77	Assessing basophil activation by flow cytometry and mass cytometry in blood stored 24 hours before analysis. Journal of Allergy and Clinical Immunology, 2017, 139, AB124.	2.9	0
78	Characterization of multifood allergic children based on clinical and serological data. Journal of Allergy and Clinical Immunology, 2017, 139, AB140.	2.9	0
79	Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. Journal of Experimental Medicine, 2017, 214, 1249-1258.	8.5	84
80	Association of Clinical Reactivity with Sensitization to Allergen Components in Multifood-Allergic Children. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1325-1334.e4.	3.8	60
81	Immune monitoring for precision medicine in allergy and asthma. Current Opinion in Immunology, 2017, 48, 82-91.	5.5	15
82	The pathophysiology of anaphylaxis. Journal of Allergy and Clinical Immunology, 2017, 140, 335-348.	2.9	330
83	Proposed Terminology and Classification of Pre-Malignant Neoplastic Conditions: A Consensus Proposal. EBioMedicine, 2017, 26, 17-24.	6.1	24
84	Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Scientific Reports, 2017, 7, 15315.	3.3	18
85	Pathways of immediate hypothermia and leukocyte infiltration in an adjuvant-free mouse model of anaphylaxis. Journal of Allergy and Clinical Immunology, 2017, 139, 584-596.e10.	2.9	32
86	Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24Âhours before analysis. Journal of Allergy and Clinical Immunology, 2017, 139, 889-899.e11.	2.9	71
87	Targeting of Immune Cells by Dual TLR2/7 Ligands Suppresses Features of Allergic Th2 Immune Responses in Mice. Journal of Immunology Research, 2017, 2017, 1-12.	2.2	11
88	Imaging protective mast cells in living mice during severe contact hypersensitivity. JCI Insight, 2017, 2, .	5.0	48
89	The tyrosine kinase inhibitor imatinib mesylate suppresses uric acid crystal-induced acute gouty arthritis in mice. PLoS ONE, 2017, 12, e0185704.	2.5	9
90	Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms. Transactions of the American Clinical and Climatological Association, 2017, 128, 193-221.	0.5	13

#	Article	IF	CITATIONS
91	A TNFRSF14-FcɛRI-mast cell pathway contributes to development of multiple features of asthma pathology in mice. Nature Communications, 2016, 7, 13696.	12.8	36
92	Neutrophils are not required for resolution of acute gouty arthritis in mice. Nature Medicine, 2016, 22, 1382-1384.	30.7	18
93	Mast cells and IgE in defense against venoms: Possible "good side―of allergy?. Allergology International, 2016, 65, 3-15.	3.3	58
94	IgE and mast cells in host defense against parasites and venoms. Seminars in Immunopathology, 2016, 38, 581-603.	6.1	151
95	Trends in Adverse Reactions Requiring Epinephrine in the Build-up Phase of Oral Immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 137, AB131.	2.9	0
96	Molecular and cellular mechanisms of food allergy and food tolerance. Journal of Allergy and Clinical Immunology, 2016, 137, 984-997.	2.9	227
97	Toward precision medicine and health: Opportunities and challenges in allergic diseases. Journal of Allergy and Clinical Immunology, 2016, 137, 1289-1300.	2.9	75
98	The Nedd4-2/Ndfip1 axis is a negative regulator of IgE-mediated mast cell activation. Nature Communications, 2016, 7, 13198.	12.8	29
99	Severity of Reactions to Oral Peanut Challenges in Children and Adults. Journal of Allergy and Clinical Immunology, 2016, 137, AB134.	2.9	0
100	Successful immunotherapy induces previously unidentified allergen-specific CD4+ T-cell subsets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1286-95.	7.1	115
101	The Mast Cell-IgE Paradox. American Journal of Pathology, 2016, 186, 212-224.	3.8	71
102	Computational Pathology: A Path Ahead. Archives of Pathology and Laboratory Medicine, 2016, 140, 41-50.	2.5	99
103	Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1. Stem Cells and Development, 2016, 25, 18-26.	2.1	26
104	Different activation signals induce distinct mast cell degranulation strategies. Journal of Clinical Investigation, 2016, 126, 3981-3998.	8.2	285
105	Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. Journal of Clinical Investigation, 2016, 126, 4497-4515.	8.2	11
106	FRT – FONDATION RENE TOURAINE. Experimental Dermatology, 2015, 24, 803-820.	2.9	0
107	Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo. Advances in Immunology, 2015, 126, 45-127.	2.2	93
108	Analyzing the Functions of Mast Cells In Vivo Using ' Mast Cell Knock-in ' Mice. Journal of Visualized Experiments, 2015, , e52753.	0.3	17

#	Article	IF	CITATIONS
109	Testing the â€~toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms. Current Opinion in Immunology, 2015, 36, 80-87.	5.5	30
110	An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015, 43, 175-186.	14.3	240
111	Editorial overview: Allergy and hypersensitivity: New developments in allergy and type 2 immunity: never a dull moment. Current Opinion in Immunology, 2015, 36, ix-xi.	5.5	0
112	The adherens junctions control susceptibility to <i>Staphylococcus aureus</i> α-toxin. Proceedings of the United States of America, 2015, 112, 14337-14342.	7.1	68
113	SnapShot: Integrated Type 2 Immune Responses. Immunity, 2015, 43, 408-408.e1.	14.3	7
114	Genomics in the clinic: ethical and policy challenges in clinical next-generation sequencing programs at early adopter USA institutions. Personalized Medicine, 2015, 12, 269-282.	1.5	3
115	A Balanced Look at the Implications of Genomic (and Other "Omicsâ€) Testing for Disease Diagnosis and Clinical Care. Genes, 2014, 5, 748-766.	2.4	9
116	Contribution of Mast Cell–Derived Interleukinâ€1β to Uric Acid Crystal–Induced Acute Arthritis in Mice. Arthritis and Rheumatology, 2014, 66, 2881-2891.	5.6	59
117	Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). Journal of Allergy and Clinical Immunology, 2014, 133, 500-510.e11.	2.9	399
118	Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice. American Journal of Pathology, 2014, 184, 2493-2504.	3.8	55
119	Rethinking the Potential Roles of Mast Cells in Skin Wound Healing and Bleomycin-Induced Skin Fibrosis. Journal of Investigative Dermatology, 2014, 134, 1802-1804.	0.7	8
120	Mechanisms of vitamin D3 metabolite repression of IgE-dependent mast cell activation. Journal of Allergy and Clinical Immunology, 2014, 133, 1356-1364.e14.	2.9	100
121	IgE Antibodies and FcεRI Are Critical For Acquired Resistance Against Honeybee Venom In Mice. Journal of Allergy and Clinical Immunology, 2014, 133, AB225.	2.9	0
122	β7 Integrin Regulates Intra-Marrow Trafficking of Hematopoietic Stem Cells. Blood, 2014, 124, 2899-2899.	1.4	0
123	PLA2G3 promotes mast cell maturation and function. Nature Immunology, 2013, 14, 527-529.	14.5	16
124	A Beneficial Role for Immunoglobulin E in Host Defense against Honeybee Venom. Immunity, 2013, 39, 963-975.	14.3	151
125	Mast Cells: Potential Positive and Negative Roles in Tumor Biology. Cancer Immunology Research, 2013, 1, 269-279.	3.4	143
126	Selective ablation of mast cells or basophils reduces peanut-induced anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2013, 132, 881-888.e11.	2.9	91

#	Article	IF	CITATIONS
127	Mast Cells Are Required for Full Expression of Allergen/SEB-Induced Skin Inflammation. Journal of Investigative Dermatology, 2013, 133, 2695-2705.	0.7	57
128	Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells. Journal of Allergy and Clinical Immunology, 2013, 132, 922-932.e16.	2.9	74
129	Mast cell anaphylatoxin receptor expression can enhance IgE-dependent skin inflammation in mice. Journal of Allergy and Clinical Immunology, 2013, 131, 541-548.e9.	2.9	83
130	Integration of Genomic Medicine into Pathology Residency Training. Journal of Molecular Diagnostics, 2013, 15, 141-148.	2.8	20
131	Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood, 2013, 122, 3659-3665.	1.4	52
132	Evidence That Mast Cells Are Not Required for Healing of Splinted Cutaneous Excisional Wounds in Mice. PLoS ONE, 2013, 8, e59167.	2.5	40
133	Mast cells, basophils, and mastocytosis. , 2013, , 284-297.		3
134	Evidence questioning cromolyn's effectiveness and selectivity as a â€~mast cell stabilizer' in mice. Laboratory Investigation, 2012, 92, 1472-1482.	3.7	109
135	Between hype and hope: whole-genome sequencing in clinical medicine. Personalized Medicine, 2012, 9, 243-246.	1.5	8
136	Critical role of P1-Runx1 in mouse basophil development. Blood, 2012, 120, 76-85.	1.4	69
137	New models for analyzing mast cell functions in vivo. Trends in Immunology, 2012, 33, 613-625.	6.8	172
138	The Chymase Mouse Mast Cell Protease 4 Degrades TNF, Limits Inflammation, and Promotes Survival in a Model of Sepsis. American Journal of Pathology, 2012, 181, 875-886.	3.8	91
139	IgE and mast cells in allergic disease. Nature Medicine, 2012, 18, 693-704.	30.7	1,386
140	Modulation of mTOR Effector Phosphoproteins in Blood Basophils from Allergic Patients. Journal of Clinical Immunology, 2012, 32, 565-573.	3.8	4
141	Role of β7 Integrin in Hematopoietic Stem Cell Trafficking Blood, 2012, 120, 2992-2992.	1.4	0
142	Mast Cells and Immunoregulation/Immunomodulation. Advances in Experimental Medicine and Biology, 2011, 716, 186-211.	1.6	88
143	Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood, 2011, 118, 6930-6938.	1.4	170
144	The role of mast cells in atrial natriuretic peptide-induced cutaneous inflammation. Regulatory Peptides, 2011, 167, 79-85.	1.9	5

#	Article	IF	CITATIONS
145	Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nature Immunology, 2011, 12, 1035-1044.	14.5	859
146	Basophil CD203c Levels Are Increased at Baseline and Can Be Used to Monitor Omalizumab Treatment in Subjects with Nut Allergy. International Archives of Allergy and Immunology, 2011, 154, 318-327.	2.1	57
147	Mast cell chymase reduces the toxicity of Gila monster venom, scorpion venom, and vasoactive intestinal polypeptide in mice. Journal of Clinical Investigation, 2011, 121, 4180-4191.	8.2	134
148	Mast Cells: Effector Cells of Anaphylaxis. , 2011, , 47-68.		1
149	Identification of an IFN-Î ³ /mast cell axis in a mouse model of chronic asthma. Journal of Clinical Investigation, 2011, 121, 3133-3143.	8.2	113
150	Localization of anionic constituents in mast cell granules of brachymorphic (bm/bm) mice by using avidin-conjugated colloidal gold. Cell and Tissue Research, 2010, 339, 561-570.	2.9	4
151	Regulation of secretory granule size by the precise generation and fusion of unit granules. Journal of Cellular and Molecular Medicine, 2010, 14, 1904-1916.	3.6	59
152	Mast cells in allergy and infection: Versatile effector and regulatory cells in innate and adaptive immunity. European Journal of Immunology, 2010, 40, 1843-1851.	2.9	338
153	Evidence that vitamin D3 promotes mast cell–dependent reduction of chronic UVB-induced skin pathology in mice. Journal of Experimental Medicine, 2010, 207, 455-463.	8.5	103
154	The role of recipient mast cells in acute and chronic cardiac allograft rejection in C57BL/6-KitW-sh/W-sh mice. Journal of Heart and Lung Transplantation, 2010, 29, 401-409.	0.6	10
155	Distinguishing Mast Cell and Granulocyte Differentiation at the Single-Cell Level. Cell Stem Cell, 2010, 6, 361-368.	11.1	85
156	Mast Cell-Derived TNF Can Exacerbate Mortality during Severe Bacterial Infections in C57BL/6-Kit Mice. American Journal of Pathology, 2010, 176, 926-938.	3.8	131
157	Thymic Stromal Lymphopoietin Contributes to Myeloid Hyperplasia and Increased Immunoglobulins, But Not Epidermal Hyperplasia, in RabGEF1-Deficient Mice. American Journal of Pathology, 2010, 177, 2411-2420.	3.8	4
158	Anaphylaxis: Mechanisms of Mast Cell Activation. Chemical Immunology and Allergy, 2010, 95, 45-66.	1.7	61
159	Antiinflammatory and Immunosuppressive Functions of Mast Cells. Methods in Molecular Biology, 2010, 677, 207-220.	0.9	38
160	Mast Cells Reduce Gvhd Severity In Allogeneic Transplantation by Reducing the Proliferation of Conventional T Cells. Blood, 2010, 116, 243-243.	1.4	0
161	Anaphylaxis to a self-peptide in the absence of mast cells or histamine. Laboratory Investigation, 2009, 89, 398-405.	3.7	9
162	Pillars article: fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient w/wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. Journal of Immunology, 2009, 183, 6863-81.	0.8	6

#	Article	IF	CITATIONS
163	IL-3 is required for increases in blood basophils in nematode infection in mice and can enhance IgE-dependent IL-4 production by basophils in vitro. Laboratory Investigation, 2008, 88, 1134-1142.	3.7	57
164	The development of allergic inflammation. Nature, 2008, 454, 445-454.	27.8	1,475
165	New developments in mast cell biology. Nature Immunology, 2008, 9, 1215-1223.	14.5	657
166	Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nature Medicine, 2008, 14, 392-398.	30.7	114
167	Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nature Reviews Immunology, 2008, 8, 478-486.	22.7	665
168	Mast cells: Versatile regulators of inflammation, tissue remodeling, host defense and homeostasis. Journal of Dermatological Science, 2008, 49, 7-19.	1.9	221
169	Basophils Are Back!. Immunity, 2008, 28, 495-497.	14.3	25
170	Mast cell–expressed orphan receptor CCRL2 binds chemerin and is required for optimal induction of IgE-mediated passive cutaneous anaphylaxis. Journal of Experimental Medicine, 2008, 205, 2207-2220.	8.5	247
171	Rabaptin-5 regulates receptor expression and functional activation in mast cells. Blood, 2008, 112, 4148-4157.	1.4	14
172	Chair's Introduction. Novartis Foundation Symposium, 2008, , 1-5.	1.1	0
173	Mast cells, basophils and mastocytosis. , 2008, , 345-360.		0
174	Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. Journal of Leukocyte Biology, 2007, 81, 1258-1268.	3.3	262
175	IL-33 induces IL-13 production by mouse mast cells independently of IgE-FcÎμRI signals. Journal of Leukocyte Biology, 2007, 82, 1481-1490.	3.3	261
176	Roles of RabGEF1/Rabex-5 domains in regulating FcϵRI surface expression and FcϵRI-dependent responses in mast cells. Blood, 2007, 109, 5308-5317.	1.4	35
177	Mast cell–derived TNF can promote Th17 cell–dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood, 2007, 109, 3640-3648.	1.4	143
178	TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood, 2007, 110, 2565-2568.	1.4	150
179	TNF can contribute to multiple features of ovalbumin-induced allergic inflammation of the airways in mice. Journal of Allergy and Clinical Immunology, 2007, 119, 680-686.	2.9	94
180	Mast cell–derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nature Immunology, 2007, 8, 1095-1104.	14.5	423

#	Article	IF	CITATIONS
181	IL-33 can promote survival, adhesion and cytokine production in human mast cells. Laboratory Investigation, 2007, 87, 971-978.	3.7	336
182	Mast cells in the promotion and limitation of chronic inflammation. Immunological Reviews, 2007, 217, 304-328.	6.0	275
183	Mast cell–derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. Journal of Allergy and Clinical Immunology, 2007, 120, 48-55.	2.9	169
184	Mast Cell-Derived Tumor Necrosis Factor Can Promote Nerve Fiber Elongation in the Skin during Contact Hypersensitivity in Mice. American Journal of Pathology, 2006, 169, 1713-1721.	3.8	89
185	Mast Cells Can Enhance Resistance to Snake and Honeybee Venoms. Science, 2006, 313, 526-530.	12.6	333
186	Interleukin-3 and c-Kit/stem cell factor are required for normal eosinophil responses in mice infected with Strongyloides venezuelensis. Laboratory Investigation, 2006, 86, 987-996.	3.7	11
187	Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Current Opinion in Immunology, 2006, 18, 751-760.	5.5	100
188	Interleukin-4-triggered, STAT6-dependent production of a factor that induces mouse mast cell apoptosis. European Journal of Immunology, 2006, 36, 1275-1284.	2.9	11
189	A Key Regulatory Role for Histamine in Experimental Autoimmune Encephalomyelitis: Disease Exacerbation in Histidine Decarboxylase-Deficient Mice. Journal of Immunology, 2006, 176, 17-26.	0.8	75
190	RabGEF1 regulates stem cell factor/c-Kit-mediated signaling events and biological responses in mast cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2659-2664.	7.1	34
191	Mast Cells Enhance T Cell Activation: Importance of Mast Cell Costimulatory Molecules and Secreted TNF. Journal of Immunology, 2006, 176, 2238-2248.	0.8	343
192	Mast Cell-Associated TNF Promotes Dendritic Cell Migration. Journal of Immunology, 2006, 176, 4102-4112.	0.8	238
193	Mast cells can promote the development of multiple features of chronic asthma in mice. Journal of Clinical Investigation, 2006, 116, 1633-1641.	8.2	242
194	RabGEF1 regulates stem cell factor/câ€Kitâ€mediated signaling events and biological responses in mast cells. FASEB Journal, 2006, 20, LB123.	0.5	0
195	Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood, 2005, 106, 2865-2870.	1.4	233
196	Adoptive transfer of mast cells does not enhance the impaired survival of / mice in a model of low dose intraperitoneal infection with bioluminescent. Immunology Letters, 2005, 99, 122-129.	2.5	16
197	Mast cells in the development of adaptive immune responses. Nature Immunology, 2005, 6, 135-142.	14.5	1,125
198	Nipping cat allergy with fusion proteins. Nature Medicine, 2005, 11, 381-382.	30.7	6

#	Article	IF	CITATIONS
199	Decreased susceptibility of mast cell-deficient KitW/KitW-v mice to the development of 1, 2-dimethylhydrazine-induced intestinal tumors. Laboratory Investigation, 2005, 85, 388-396.	3.7	68
200	Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6467-6472.	7.1	226
201	From The Cover: Identification of mast cell progenitors in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11408-11413.	7.1	265
202	Using Mast Cell Knock-In Mice to Analyze the Roles of Mast Cells in Allergic Responses in vivo. , 2005, 87, 179-197.		55
203	Mast Cell-Deficient W-sash c-kit Mutant KitW-sh/W-sh Mice as a Model for Investigating Mast Cell Biology in Vivo. American Journal of Pathology, 2005, 167, 835-848.	3.8	523
204	Pathogenesis and management of anaphylaxis: Current status and future challenges. Journal of Allergy and Clinical Immunology, 2005, 115, 571-574.	2.9	46
205	Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. Journal of Allergy and Clinical Immunology, 2005, 116, 1357-1363.	2.9	76
206	MAST CELLS AS "TUNABLE―EFFECTOR AND IMMUNOREGULATORY CELLS: Recent Advances. Annual Review of Immunology, 2005, 23, 749-786.	21.8	1,121
207	RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nature Immunology, 2004, 5, 844-852.	14.5	64
208	Lack of significant skin inflammation during elimination by apoptosis of large numbers of mouse cutaneous mast cells after cessation of treatment with stem cell factor. Laboratory Investigation, 2004, 84, 1593-1602.	3.7	8
209	Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature, 2004, 432, 512-516.	27.8	275
210	Immune Sensitization in the Skin Is Enhanced by Antigen-Independent Effects of IgE. Immunity, 2004, 20, 381-392.	14.3	173
211	Chair's introduction. Anaphylaxis. Novartis Foundation Symposium, 2004, 257, 1-5.	1.1	1
212	Mast cells to the defense. Nature Immunology, 2003, 4, 1160-1162.	14.5	39
213	Involvement of both 'allergic' and 'autoimmune' mechanisms in EAE, MS and other autoimmune diseases. Trends in Immunology, 2003, 24, 479-484.	6.8	126
214	Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1867-1872.	7.1	121
215	Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12911-12916.	7.1	249
216	Identification of A3 Receptor- and Mast Cell-Dependent and -Independent Components of Adenosine-Mediated Airway Responsiveness in Mice. Journal of Immunology, 2003, 171, 331-337.	0.8	65

#	Article	IF	CITATIONS
217	Transcriptional response of human mast cells stimulated via the Fc(epsilon)RI and identification of mast cells as a source of IL-11. BMC Immunology, 2002, 3, 5.	2.2	56
218	Mast Cells Derived from Embryonic Stem Cells: A Model System for Studying the Effects of Genetic Manipulations on Mast Cell Development, Phenotype, and Function In Vitro and In Vivo. International Journal of Hematology, 2002, 75, 345-349.	1.6	55
219	Analyzing the Roles of Mast Cells and Basophils in Host Defense and Other Biological Responses. International Journal of Hematology, 2002, 75, 363-369.	1.6	38
220	Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Medicine, 2002, 8, 500-508.	30.7	1,558
221	Regulation of mast-cell and basophil function and survival by IgE. Nature Reviews Immunology, 2002, 2, 773-786.	22.7	569
222	Regulation of Mast Cell Survival by IgE. Immunity, 2001, 14, 791-800.	14.3	307
223	An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nature Immunology, 2001, 2, 216-222.	14.5	174
224	Regulation of mouse mast cell surface FcεRI expression by dexamethasone. International Immunology, 2001, 13, 843-851.	4.0	36
225	Mast cells and basophils. Current Opinion in Hematology, 2000, 7, 32-39.	2.5	364
226	A Role for Bax in the Regulation of Apoptosis in Mouse Mast Cells. Journal of Investigative Dermatology, 2000, 114, 1205-1206.	0.7	26
227	Roles of mast cells and basophils in innate and acquired immunity. Current Opinion in Immunology, 2000, 12, 624-631.	5.5	313
228	Allergy. Current Biology, 2000, 10, R93-R95.	3.9	15
229	A Role for CD21/CD35 and CD19 in Responses to Acute Septic Peritonitis: A Potential Mechanism for Mast Cell Activation. Journal of Immunology, 2000, 165, 6915-6921.	0.8	97
230	Mast Cells Can Amplify Airway Reactivity and Features of Chronic Inflammation in an Asthma Model in Mice. Journal of Experimental Medicine, 2000, 192, 455-462.	8.5	372
231	The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. Journal of Allergy and Clinical Immunology, 2000, 105, 847-859.	2.9	329
232	Mast cells as sentinels of innate immunity. Current Opinion in Immunology, 1999, 11, 53-59.	5.5	359
233	Mast-cell heparin demystified. Nature, 1999, 400, 714-715.	27.8	32
234	Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit. Experimental Hematology, 1999, 27, 689-697.	0.4	203

#	Article	IF	CITATIONS
235	Mast cells contribute to PACAP-induced dermal oedema in mice. Regulatory Peptides, 1999, 82, 65-69.	1.9	17
236	Stem cell factor influences neuro-immune interactions: The response of mast cells to pituitary adenylate cyclase activating polypeptide is altered by stem cell factor. Regulatory Peptides, 1999, 83, 73-80.	1.9	17
237	Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature, 1998, 392, 90-93.	27.8	533
238	Defective cytoplasmic granule formation. Cell and Tissue Research, 1998, 293, 445-452.	2.9	15
239	Ultrastructural analysis of human skin biopsy specimens from patients receiving recombinant human stem cell factor: Subcutaneous injection of rhSCF induces dermal mast cell degranulation and granulocyte recruitment at the injection siteâ ⁺ tâ ⁺ tâ ⁺ tâ [*] â [*] â [*] Journal of Allergy and Clinical Immunology, 199 793-806.	8, ² 101,	19
240	Involvement of Bruton's Tyrosine Kinase in FcεRI-dependent Mast Cell Degranulation and Cytokine Production. Journal of Experimental Medicine, 1998, 187, 1235-1247.	8.5	238
241	The c-kit Ligand, Stem Cell Factor, Can Enhance Innate Immunity Through Effects on Mast Cells. Journal of Experimental Medicine, 1998, 188, 2343-2348.	8.5	156
242	Mast Cells Can Secrete Vascular Permeability Factor/ Vascular Endothelial Cell Growth Factor and Exhibit Enhanced Release after Immunoglobulin E–dependent Upregulation of Fcε Receptor I Expression. Journal of Experimental Medicine, 1998, 188, 1135-1145.	8.5	320
243	IgE Enhances Mouse Mast Cell FcεRI Expression In Vitro and In Vivo: Evidence for a Novel Amplification Mechanism in IgE-dependent Reactions. Journal of Experimental Medicine, 1997, 185, 663-672.	8.5	430
244	Negative Regulation of FcεRI-mediated Degranulation by CD81. Journal of Experimental Medicine, 1997, 186, 1307-1314.	8.5	65
245	Complexity and Redundancy in the Pathogenesis of Asthma: Reassessing the Roles of Mast Cells and T Cells. Journal of Experimental Medicine, 1997, 186, 343-347.	8.5	111
246	The Mast Cell: A Versatile Effector Cell for a Challenging World. International Archives of Allergy and Immunology, 1997, 113, 14-22.	2.1	75
247	Promotion of mouse fibroblast proliferation by IgE-dependent activation of mouse mast cells: Role for mast cell tumor necrosis factor-α and transforming growth factor-β1. Journal of Allergy and Clinical Immunology, 1997, 99, 113-123.	2.9	22
248	The HMC-1 Human Mast Cell Line Expresses the Hepatocyte Growth Factor Receptor c-met. Biochemical and Biophysical Research Communications, 1997, 239, 740-745.	2.1	5
249	Expression of Functional TrkA Receptor Tyrosine Kinase in the HMC-1 Human Mast Cell Line and in Human Mast Cells. Blood, 1997, 90, 1807-1820.	1.4	151
250	Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature, 1997, 390, 172-175.	27.8	266
251	Alterations in arachidonic acid metabolism in mouse mast cells induced to undergo maturation in vitro in response to stem cell factor. Journal of Allergy and Clinical Immunology, 1996, 97, 1329-1341.	2.9	10
252	The Regulation of Tumor Necrosis Factor-α Production in Murine Mast Cells: Pentoxifylline or Dexamethasone Inhibits IgE-Dependent Production of TNF-α by Distinct Mechanisms. Cellular Immunology, 1996, 171, 140-146.	3.0	43

#	Article	IF	CITATIONS
253	Dexamethasone or cyclosporin A inhibits stem cell factor-dependent secretory responses of rat peritoneal mast cells in vitro. Immunopharmacology, 1996, 34, 63-70.	2.0	21
254	The two faces of the mast cell. Nature, 1996, 381, 21-22.	27.8	193
255	Ultrastructural immunogold localization of subcellular sites of TNF-α in colonic Crohn's disease. Journal of Leukocyte Biology, 1995, 58, 284-298.	3.3	94
256	Analysis of Mast Cell Activation Using Diamine Oxidase-Gold Enzyme-Affinity Ultrastructural Cytochemistry. International Archives of Allergy and Immunology, 1995, 107, 87-89.	2.1	7
257	Mouse mast cell cytokine production: role in cutaneous inflammatory and immunological responses. Experimental Dermatology, 1995, 4, 240-249.	2.9	31
258	Dexamethasone and Cyclosporin A Suppress Mast Cell-Leukocyte Cytokine Cascades by Multiple Mechanisms. International Archives of Allergy and Immunology, 1995, 107, 323-324.	2.1	23
259	Regulation of Mouse and Human Mast Cell Development, Survival and Function by Stem Cell Factor, the Ligand for the c- <i>kit</i> Receptor. International Archives of Allergy and Immunology, 1995, 107, 51-53.	2.1	113
260	Ultrastructural immunogold localization of tumor necrosis factor-α to the cytoplasmic granules of rat peritoneal mast cells with rapid microwave fixation. Journal of Allergy and Clinical Immunology, 1994, 94, 531-536.	2.9	29
261	New concepts about the mast cell. Journal of Allergy and Clinical Immunology, 1994, 94, 1141.	2.9	8
262	Cytoplasmic granule formation in mouse pancreatic acinar cells. Evidence for formation of immature granules (condensing vacuoles) by aggregation and fusion of progranules of unit size, and for reductions in membrane surface area and immature granule volume during granule maturation. Cell and Tissue Research, 1994, 278, 327-336.	2.9	2
263	Distinct patterns of early response gene expression and proliferation in mouse mast cells stimulated by stem cell factor, interleukin-3, or IgE and antigen. European Journal of Immunology, 1993, 23, 867-872.	2.9	36
264	Activation of MAP kinases, pp90rsk and pp70-S6 kinases in mouse mast cells by signaling through the c-kit receptor tyrosine kinase or FcÎμRI: rapamycin inhibits activation of pp70-S6 kinase and proliferation in mouse mast cells. European Journal of Immunology, 1993, 23, 3286-3291.	2.9	88
265	Variants of Vasoactive Intestinal Peptide in Mouse Mast Cells and Rat Basophilic Leukemia Cells. Cellular Immunology, 1993, 151, 369-378.	3.0	25
266	New Concepts about the Mast Cell. New England Journal of Medicine, 1993, 328, 257-265.	27.0	934
267	The kit Ligand, Stem Cell Factor. Advances in Immunology, 1993, 55, 1-96.	2.2	517
268	Mast Cell Abnormalities in the Chédiak-Higashi Syndrome. International Archives of Allergy and Immunology, 1993, 100, 89-92.	2.1	4
269	Mast Cell Cytokines in Allergy and Inflammation. , 1993, 43, 209-220.		48
270	Regulation of Mast Cell Proliferation, Maturation and Function by Stem Cell Factor, a Ligand for the c- <i>kit</i> Receptor. International Archives of Allergy and Immunology, 1992, 99, 234-237.	2.1	8

#	Article	IF	CITATIONS
271	Effect of Recombinant Human c- <i>kit</i> Receptor Ligand on Mediator Release from Human Skin Mast Cells. International Archives of Allergy and Immunology, 1992, 99, 323-325.	2.1	1
272	Inhibition of Cutaneous Contact Hypersensitivity in the Mouse with Systemic or Topical Spiperone: Topical Application of Spiperone Produces Local Immunosuppression Without Inducing Systemic Neuroleptic Effects. Journal of Investigative Dermatology, 1992, 99, 594-600.	0.7	11
273	Cytokine production by mast cells and basophils. Current Biology, 1992, 2, 73.	3.9	Ο
274	Induction of local inflammation by recombinant human platelet factor 4 in the mouse. Cellular Immunology, 1991, 137, 72-80.	3.0	13
275	Stem cell factor (SCF), a novel hematopoietic growth factor and ligand for c-kit tyrosine kinase receptor, maps on human chromosome 12 between 12q14.3 and 12qter. Somatic Cell and Molecular Genetics, 1991, 17, 207-214.	0.7	75
276	Mast cells in rat dermis and jejunal lamina propria show a five-fold difference in unit granule volume. Cell and Tissue Research, 1991, 265, 329-334.	2.9	9
277	Cytokine production by mast cells and basophils. Current Opinion in Immunology, 1991, 3, 865-873.	5.5	320
278	Mast cells as a source of both preformed and immunologically inducible TNF-α/cachectin. Nature, 1990, 346, 274-276.	27.8	935
279	Mast cells as a source of multifunctional cytokines. Trends in Immunology, 1990, 11, 458-464.	7.5	689
280	Generation and Recognition of Vasoactive Intestinal Peptide by Cells of the Immune System. Annals of the New York Academy of Sciences, 1990, 594, 34-44.	3.8	22
281	Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell, 1990, 63, 213-224.	28.9	1,406
282	Mast Cells: Immunologically Specific Effectors and Potential Sources of Multiple Cytokines During IgEâ€Dependent Responses. Novartis Foundation Symposium, 1989, 147, 53-73.	1.1	15
283	Tissue Destruction Resulting from the Interaction of Cytotoxic T Cells and Their Targets. Annals of the New York Academy of Sciences, 1988, 532, 106-118.	3.8	14
284	Mast Cells: A New Approach for Analyzing their Maturation and Function In Vivo. Allergy and Asthma Proceedings, 1988, 9, 621-627.	2.2	2
285	Analysis of Mast Cell Function in Biological Responses Not Involving IgE. International Archives of Allergy and Immunology, 1987, 82, 269-271.	2.1	8
286	Beige Mouse Mast Cells Generated in vitro: Ultrastructural Analysis of Maturation Induced by Sodium Butyrate and of IgE-Mediated, Antigen-Dependent Degranulation. International Archives of Allergy and Immunology, 1987, 82, 261-268.	2.1	11
287	Experiments on the mode of action of piriprost (U-60,257), an inhibitor of leukotriene formation in cloned mouse mast cells and in rat basophil leukemia cells. Biochemical Pharmacology, 1987, 36, 1461-1466.	4.4	8
288	Cloned "anomalous―killer cells derived from allogeneic mixed leukocyte culture. Cellular Immunology, 1987, 107, 201-218.	3.0	2

#	Article	IF	CITATIONS
289	Studies of the role of mast cells in contact sensitivity responses. Cellular Immunology, 1987, 109, 39-52.	3.0	25
290	Cutaneous Basophil Hypersensitivity. , 1986, , 321-369.		9
291	Surface Membrane Traffic in Guinea Pig Basophils Exposed to Cationic Ferritin. International Archives of Allergy and Immunology, 1985, 77, 267-273.	2.1	4
292	Cloned Mouse Mast Cells and Normal Mouse Peritoneal Mast Cells. International Archives of Allergy and Immunology, 1985, 77, 189-191.	2.1	20
293	Lack of detectable immunoglobulin E receptor expression on 33 of 34 cell lines with natural killer-like or cytotoxic-T-lymphocyte activity. Cellular Immunology, 1985, 96, 223-230.	3.0	4
294	Histamine-releasing activity (HRA). Clinical Immunology and Immunopathology, 1984, 32, 142-150.	2.0	24
295	A cloned cell with NK function resembles basophils by ultrastructure and expresses IgE receptors. Nature, 1982, 298, 288-290.	27.8	46
296	Inducer T lymphocytes synthesize a factor that stimulates proliferation of cloned mast cells. Nature, 1981, 291, 332-334.	27.8	350
297	The Microvasculature is the Critical Target of the Immune Response in Vascularized Skin Allograft Rejection. Journal of Investigative Dermatology, 1980, 74, 280-284.	0.7	28
298	Malignant fibrous histiocytoma and pleomorphic sarcoma in association with medullary bone infarcts. Cancer, 1978, 41, 607-619.	4.1	81
299	Case 8-1975. New England Journal of Medicine, 1975, 292, 415-421.	27.0	10
300	Immune Sensitization in the Skin is Enhanced by Antigen-Independent Effects of IgE on Mast Cells. Novartis Foundation Symposium, 0, , 15-38.	1.1	6
301	RabGEF1, a Negative Regulator of Ras Signalling, Mast Cell Activation and Skin Inflammation. Novartis Foundation Symposium, 0, , 115-130.	1.1	1
302	Roles of Mast Cells and Basophils in Innate Immunity. , 0, , 111-132.		1