
Sergio GÃ³mez-Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3524794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flavonol Profiles ofVitis viniferaRed Grapes and Their Single-Cultivar Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 992-1002.	2.4	342
2	Simultaneous HPLC Analysis of Biogenic Amines, Amino Acids, and Ammonium Ion as Aminoenone Derivatives in Wine and Beer Samples. Journal of Agricultural and Food Chemistry, 2007, 55, 608-613.	2.4	273
3	HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 2007, 20, 618-626.	1.9	237
4	Flavonol 3- <i>O</i> -Glycosides Series of <i>Vitis vinifera</i> Cv. Petit Verdot Red Wine Grapes. Journal of Agricultural and Food Chemistry, 2009, 57, 209-219.	2.4	178
5	Phenolic Compounds Profile of Cornicabra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2002, 50, 6812-6817.	2.4	172
6	Changes in Phenolic Composition and Antioxidant Activity of Virgin Olive Oil during Frying. Journal of Agricultural and Food Chemistry, 2003, 51, 667-672.	2.4	162
7	Polyphenols and Antioxidant Activity of Calafate (Berberis microphylla) Fruits and Other Native Berries from Southern Chile. Journal of Agricultural and Food Chemistry, 2010, 58, 6081-6089.	2.4	160
8	Influence of extraction system, production year and area on Cornicabra virgin olive oil: a study of five crop seasons. Food Chemistry, 2003, 80, 359-366.	4.2	152
9	Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: Comparison with other Spanish cultivars. Food Chemistry, 2004, 86, 485-492.	4.2	147
10	Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chemistry, 2007, 100, 36-42.	4.2	142
11	Red-Color Related Phenolic Composition of Garnacha Tintorera (<i>Vitis vinifera</i> L.) Grapes and Red Wines. Journal of Agricultural and Food Chemistry, 2009, 57, 7883-7891.	2.4	138
12	Cornicabra virgin olive oil: a study of five crop seasons. Composition, quality and oxidative stability. Food Chemistry, 2001, 74, 267-274.	4.2	129
13	Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 2017, 214, 308-318.	4.2	124
14	Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Research International, 2013, 51, 706-713.	2.9	98
15	Tissue-Specific Effects of Central Leptin on the Expression of Genes Involved in Lipid Metabolism in Liver and White Adipose Tissue. Endocrinology, 2007, 148, 5604-5610.	1.4	96
16	Stilbene Levels in Grape Cane of Different Cultivars in Southern Chile: Determination by HPLC-DAD-MS/MS Method. Journal of Agricultural and Food Chemistry, 2012, 60, 929-933.	2.4	95
17	Circulating Anthocyanin Metabolites Mediate Vascular Benefits of Blueberries: Insights From Randomized Controlled Trials, Metabolomics, and Nutrigenomics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 967-976.	1.7	93
18	Phenolic composition of the berry parts of hybrid grape cultivar BRS Violeta (BRS Rubea×IAC 1398-21) using HPLC–DAD–ESI-MS/MS. Food Research International, 2013, 54, 354-366.	2.9	91

#	Article	IF	CITATIONS
19	Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis, 2010, 23, 699-705.	1.9	90
20	Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy. Food Research International, 2013, 50, 250-258.	2.9	87
21	Sterol and alcohol composition of Cornicabra virgin olive oil: the campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chemistry, 2004, 84, 533-537.	4.2	80
22	Comprehensive study of the phenolic composition of the edible parts of jambolan fruit (Syzygium) Tj ETQq0 0 0	rgBT _/ Over 2 . 9	lock 10 Tf 50
23	Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistry, 2015, 180, 171-180.	4.2	71
24	Changes in the aromatic composition of Tempranillo wines during spontaneous malolactic fermentation. Journal of Food Composition and Analysis, 2008, 21, 724-730.	1.9	70
25	Oxidation kinetics in olive oil triacylglycerols under accelerated shelf-life testing (25–75â€Â°C). European Journal of Lipid Science and Technology, 2004, 106, 369-375.	1.0	69
26	Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chemistry, 2014, 155, 256-263.	4.2	69
27	Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chemistry, 2018, 252, 61-71.	4.2	69
28	Phenolic composition of grape and winemaking by-products of Brazilian hybrid cultivars BRS Violeta and BRS Lorena. Food Chemistry, 2014, 159, 95-105.	4.2	67
29	Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Research International, 2014, 65, 282-290.	2.9	66
30	Application of abscisic acid (S-ABA) to cv. Isabel grapes (Vitis vinifera×Vitis labrusca) for color improvement: Effects on color, phenolic composition and antioxidant capacity of their grape juice. Food Research International, 2015, 77, 572-583.	2.9	63
31	Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules, 2019, 24, 3763.	1.7	63
32	PDO virgin olive oil quality—Minor components and organoleptic evaluation. Food Research International, 2010, 43, 2138-2146.	2.9	56
33	Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Research International, 2018, 108, 396-404.	2.9	55
34	Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control, 2012, 23, 73-81.	2.8	54
35	Oxygen consumption rates by different oenological tannins in a model wine solution. Food Chemistry, 2017, 234, 26-32.	4.2	53
36	Amino acids and biogenic amines during spontaneous malolactic fermentation in Tempranillo red wines. Journal of Food Composition and Analysis, 2008, 21, 731-735.	1.9	51

#	Article	IF	CITATIONS
37	Analysis of hydroxycinnamic acids derivatives in calafate (Berberis microphylla G. Forst) berries by liquid chromatography with photodiode array and mass spectrometry detection. Journal of Chromatography A, 2013, 1281, 38-45.	1.8	51
38	Antimicrobial activity and differentiation of anthocyanin profiles of rabbiteye and highbush blueberries using HPLC–DAD–ESI-MS n and multivariate analysis. Journal of Functional Foods, 2016, 26, 506-516.	1.6	51
39	Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chemistry, 2019, 295, 350-360.	4.2	50
40	Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Food Chemistry, 2014, 158, 449-458.	4.2	48
41	Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds. Food Research International, 2017, 102, 32-42.	2.9	48
42	Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chemistry, 2018, 265, 101-110.	4.2	47
43	LC-MS/MS analysis of free fatty acid composition and other lipids in skins and seeds of Vitis vinifera grape cultivars. Food Research International, 2019, 125, 108556.	2.9	42
44	Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content. Food Chemistry, 2016, 199, 822-827.	4.2	40
45	Influence of Grape Seeds and Stems on Wine Composition and Astringency. Journal of Agricultural and Food Chemistry, 2016, 64, 6555-6566.	2.4	40
46	Effect of irrigation and variety on oxygen (δ18O) and carbon (δ13C) stable isotope composition of grapes cultivated in a warm climate. Australian Journal of Grape and Wine Research, 2010, 16, 283-289.	1.0	37
47	Hydroxycinnamic acids and flavonols in native edible berries of South Patagonia. Food Chemistry, 2015, 167, 84-90.	4.2	37
48	Evolution of the oxidation process in olive oil triacylglycerol under accelerated storage conditions (40-60°C). JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 177-184.	0.8	36
49	Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta ("BRS Rúbeaâ€Ã—"IAC 1398-21â€). Food Research Internationa 2013, 54, 33-43.	al 2. 9	35
50	Occurrence of low molecular weight phenolics in Vitis vinifera red grape cultivars and their winemaking by-products from SA£o Paulo (Brazil). Food Research International, 2014, 62, 500-513.	2.9	35
51	Green Extraction of Alkaloids and Polyphenols from Peumus boldus Leaves with Natural Deep Eutectic Solvents and Profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants, 2020, 9, 242.	1.6	34
52	Evaluation of the Food Sniffer electronic nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat quality. European Food Research and Technology, 2018, 244, 1047-1055.	1.6	33
53	Flavonols, Alkaloids, and Antioxidant Capacity of Edible Wild <i>Berberis</i> Species from Patagonia. Journal of Agricultural and Food Chemistry, 2014, 62, 12407-12417.	2.4	32
54	Variability of biogenic amine and free amino acid concentrations in regionally produced goat milk cheeses. Journal of Food Composition and Analysis, 2016, 51, 85-92.	1.9	32

#	Article	IF	CITATIONS
55	The Chilean wild raspberry (Rubus geoides Sm.) increases intracellular GSH content and protects against H2O2 and methylglyoxal-induced damage in AGS cells. Food Chemistry, 2016, 194, 908-919.	4.2	31
56	Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants, 2021, 10, 1130.	2.2	31
57	Isolation and Structural Elucidation of Anthocyanidin 3,7-β- <i>O</i> -Diglucosides and Caffeoyl-glucaric Acids from Calafate Berries. Journal of Agricultural and Food Chemistry, 2014, 62, 6918-6925.	2.4	30
58	Measurement of the interaction between mucin and oenological tannins by Surface Plasmon Resonance (SPR); relationship with astringency. Food Chemistry, 2019, 275, 397-406.	4.2	30
59	Cucurbita maxima Pumpkin Seed Oil: from the Chemical Properties to the Different Extracting Techniques. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46, 663-669.	0.5	29
60	Antiproliferative and cytotoxic effects of grape pomace and grape seed extracts on colorectal cancer cell lines. Food Science and Nutrition, 2019, 7, 2948-2957.	1.5	29
61	Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia. Molecules, 2019, 24, 3331.	1.7	29
62	Effect of Coffee Cascara Dietary Fiber on the Physicochemical, Nutritional and Sensory Properties of a Gluten-Free Bread Formulation. Molecules, 2020, 25, 1358.	1.7	29
63	Phenolics profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify Rabbiteye and Highbush blueberries. Food Chemistry, 2021, 340, 127958.	4.2	28
64	Effect of thermomaceration and enzymatic maceration on phenolic compounds of grape must enriched by grape pomace, vine leaves and canes. European Food Research and Technology, 2016, 242, 1149-1158.	1.6	27
65	Anthocyanin profile of Spanish Vitis vinifera L. red grape varieties in danger of extinction. Australian Journal of Grape and Wine Research, 2007, 13, 150-156.	1.0	25
66	Inhibition of colon adenocarcinoma cell proliferation by flavonols is linked to a G2/M cell cycle block and reduction in cyclin D1 expression. Food Chemistry, 2012, 130, 493-500.	4.2	25
67	Antioxidant activity and the isolation of polyphenols and new iridoids from Chilean Gaultheria phillyreifolia and G. poeppigii berries. Food Chemistry, 2019, 291, 167-179.	4.2	25
68	Storage stability of the phenolic compounds, color and antioxidant activity of jambolan juice powder obtained by foam mat drying. Food Research International, 2020, 128, 108750.	2.9	25
69	Comprehensive Chemical and Sensory Assessment of Wines Made from White Grapes of Vitis vinifera Cultivars Albillo Dorado and Montonera del Casar: A Comparative Study with Airén. Foods, 2020, 9, 1282.	1.9	24
70	Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Research International, 2021, 143, 110265.	2.9	24
71	New acylated flavonols identified in Vitis vinifera grapes and wines. Food Research International, 2018, 112, 98-107.	2.9	23
72	First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLCâ€DADâ€ESlâ€MS/MS, GCâ€MS, and Napping® techniques: comparison with Tempranillo. Journal of the Science of Food and Agriculture, 2019, 99, 2108-2123.	1.7	23

SERGIO GÃ³MEZ-ALONSO

#	Article	IF	CITATIONS
73	Flavonol Profiles for Grape and Wine Authentication. ACS Symposium Series, 2011, , 113-129.	0.5	22
74	Influence of berry size on red wine colour and composition. Australian Journal of Grape and Wine Research, 2015, 21, 200-212.	1.0	22
75	BRS Violeta (BRS Rúbea ×â€IAC 1398-21) grape juice powder produced by foam mat drying. Part I: Effect of drying temperature on phenolic compounds and antioxidant activity. Food Chemistry, 2019, 298, 124971.	4.2	22
76	Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking. Food Chemistry, 2019, 277, 391-397.	4.2	22
77	Synthesis, Isolation, Structure Elucidation, and Color Properties of 10-Acetyl-pyranoanthocyanins. Journal of Agricultural and Food Chemistry, 2012, 60, 12210-12223.	2.4	21
78	Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Research International, 2016, 87, 197-203.	2.9	20
79	C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1074-1075, 70-78.	1.2	20
80	Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chemistry, 2018, 268, 347-354.	4.2	20
81	Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape cane Extract. Molecules, 2020, 25, 1306.	1.7	20
82	Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia) Tj ETQq0 0 0	rgBT /Ove 4:2	erlock 10 Tf
83	Comprehensive Study of the Phenolic Compound Profile and Antioxidant Activity of Eight Pistachio Cultivars and Their Residual Cakes and Virgin Oils. Journal of Agricultural and Food Chemistry, 2019, 67, 3583-3594.	2.4	19
84	Structure Elucidation of Peonidin 3,7- <i>O</i> -β-Diglucoside Isolated from Garnacha Tintorera (Vitis) Tj ETQq0 0 C) rgBT /Ove 2:4	erlock 10 Tf
85	Sensory descriptive and comprehensive GC–MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part I: BRS Carmem and BRS Violeta. Food Chemistry, 2019, 272, 462-470.	4.2	18
86	Influence of the volatile substances released by oak barrels into a Cabernet Sauvignon red wine and a discolored Macabeo white wine on sensory appreciation by a trained panel. European Food Research and Technology, 2018, 244, 245-258.	1.6	18
87	Sensory acceptance drivers of pre-fermentation dehydration and submerged cap red wines produced from Vitis labrusca hybrid grapes. LWT - Food Science and Technology, 2016, 69, 82-90.	2.5	16
88	Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. Nutrients, 2019, 11, 1411.	1.7	16
89	Analysis of the phenolic composition and yield of â€~BRS Vitoria' seedless table grape under different bunch densities using HPLC–DAD–ESI-MS/MS. Food Research International, 2020, 130, 108955.	2.9	15

90Phenolic composition of peels from different Jaboticaba species determined by HPLC-DAD-ESI/MSn and
antiproliferative activity in tumor cell lines. Current Plant Biology, 2022, 29, 100233.2.315

#	Article	IF	CITATIONS
91	Pre-drying and submerged cap winemaking: Effects on polyphenolic compounds and sensory descriptors. Part II: BRS Carmem and BordA´ (Vitis labrusca L.). Food Research International, 2015, 76, 697-708.	2.9	14
92	Natural extracts from fresh and ovenâ€dried winemaking byâ€products as valuable source of antioxidant compounds. Food Science and Nutrition, 2018, 6, 1564-1574.	1.5	14
93	Membrane Lipid Variability in <i>Saccharomyces cerevisiae</i> Wine Strains Rehydrated in the Presence of Metabolic Activators. Journal of Agricultural and Food Chemistry, 2014, 62, 8679-8685.	2.4	13
94	Vine-Shoot Tannins: Effect of Post-pruning Storage and Toasting Treatment. Journal of Agricultural and Food Chemistry, 2018, 66, 5556-5562.	2.4	13
95	Characterization of an Antioxidant-Enriched Beverage from Grape Musts and Extracts of Winery and Grapevine By-Products. Beverages, 2018, 4, 4.	1.3	13
96	Sensory descriptive and comprehensive GC-MS as suitable tools to characterize the effects of alternative winemaking procedures on wine aroma. Part II: BRS Rúbea and BRS Cora. Food Chemistry, 2020, 311, 126025.	4.2	13
97	Influence of grape seeds on wine composition and astringency of Tempranillo, Garnacha, Merlot and Cabernet Sauvignon wines. Food Science and Nutrition, 2020, 8, 3442-3455.	1.5	12
98	Polyphenolic Compounds Extracted and Purified from Buddleja Globosa Hope (Buddlejaceae) Leaves Using Natural Deep Eutectic Solvents and Centrifugal Partition Chromatography. Molecules, 2021, 26, 2192.	1.7	12
99	Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food Chemistry, 2017, 226, 23-31.	4.2	11
100	Evaluation of microextraction by packed sorbent, liquid–liquid microextraction and derivatization pretreatment of dietâ€derived phenolic acids in plasma by gas chromatography with triple quadrupole mass spectrometry. Journal of Separation Science, 2017, 40, 3487-3496.	1.3	11
101	Polyphenolic profile and antioxidant activity of meristem and leaves from "chagual―(Puya chilensis) Tj ETQq1	1.0.7843 2.9	14 rgBT /0∨ 11
102	Influence of Profiles and Concentrations of Phenolic Compounds in the Coloration and Antioxidant Properties of Gaultheria poeppigii Fruits from Southern Chile. Plant Foods for Human Nutrition, 2020, 75, 532-539.	1.4	11
103	Effects of malolactic fermentation on colour stability and phenolic composition of Petit Verdot red wines. Wine Studies, 2016, 5, .	0.4	10
104	Comparison between the phenolic composition of Petit Verdot wines elaborated at different maceration/fermentation temperatures. International Journal of Food Properties, 2018, 21, 996-1007.	1.3	10
105	Flavanol Glycoside Content of Grape Seeds and Skins of Vitis vinifera Varieties Grown in Castilla-La Mancha, Spain. Molecules, 2019, 24, 4001.	1.7	10
106	Characterization of the phenolic ripening development of â€~BRS Vitoria' seedless table grapes using HPLC–DAD–ESI-MS/MS. Journal of Food Composition and Analysis, 2021, 95, 103693.	1.9	10
107	Oenological potential of extracts from winery and cooperage by-products in combination with colloidal silver as natural substitutes to sulphur dioxide. Food Chemistry, 2019, 276, 485-493.	4.2	9
108	Genotypic variation in phenolic composition of novel white grape genotypes (Vitis vinifera L.). Journal of Food Composition and Analysis, 2021, 102, 103987.	1.9	8

#	Article	IF	CITATIONS
109	Isabel red wines produced from grape pre-drying and submerged cap winemaking: A phenolic and sensory approach. LWT - Food Science and Technology, 2017, 81, 58-66.	2.5	7
110	Differences in <i>Vvufgt</i> and <i>VvmybA1</i> Gene Expression Levels and Phenolic Composition in Table Grape (<i>Vitis vinifera</i> L.) †Red Globe' and Its Somaclonal Variant †Pink Globe'. Journal of Agricultural and Food Chemistry, 2017, 65, 2793-2804.	2.4	7
111	Systematic study of hydroxyl radical production in white wines as a function of chemical composition. Food Chemistry, 2019, 288, 377-385.	4.2	7
112	<i>Vitis vinifera</i> Turkish grape cultivar Karaerik. Part I: anthocyanin composition, and identification of a newly found anthocyanin ^{â€} . Journal of the Science of Food and Agriculture, 2020, 100, 1301-1310.	1.7	7
113	Influence of oenological tannins on malvidin-3-O-monoglucoside copigmentation in a model wine solution. Oeno One, 2019, 53, .	0.7	7
114	Effects of Water Stress on the Phenolic Compounds of â€~Merlot' Grapes in a Semi-Arid Mediterranean Climate. Horticulturae, 2021, 7, 161.	1.2	6
115	Postharvest longevity of 'BRS Vitória' seedless grapes subjected to cold storage and acibenzolar-S-methyl application. Pesquisa Agropecuaria Brasileira, 2018, 53, 809-814.	0.9	5
116	Influence of grape maturity and prefermentative cluster treatment of the Grenache cultivar on wine composition and quality. Oeno One, 2017, 50, 169.	0.7	5
117	Pre-drying and submerged cap winemaking: Effects on polyphenolic compounds and sensory descriptors. Part I: BRS Rúbea and BRS Cora. Food Research International, 2015, 75, 374-384.	2.9	4
118	Phenolic composition of BRS Violeta red wines produced from alternative winemaking techniques: relationship with antioxidant capacity and sensory descriptors. European Food Research and Technology, 2016, 242, 1913-1923.	1.6	4
119	BRS Clara raisins production: Effect of the pre-treatment and the drying process on the phenolic composition. Journal of Food Composition and Analysis, 2022, 114, 104771.	1.9	4
120	<scp><i>Vitis vinifera</i> Turkish</scp> novel table grape â€~ <scp>Karaerik</scp> '. Part <scp>II</scp> : Nonâ€anthocyanin phenolic composition and antioxidant capacity. Journal of the Science of Food and Agriculture, 2022, 102, 813-822.	1.7	3
121	Chemical composition of jabuticaba (Plinia jaboticaba) liquors produced from cachaça and cereal alcohol. LWT - Food Science and Technology, 2022, 155, 112923.	2.5	3
122	Prototypes of nutraceutical products from microparticles loaded with stilbenes extracted from grape cane. Food and Bioproducts Processing, 2022, 134, 19-29.	1.8	3
123	Overview of Chemical Markers for Varietal Authentication of Red Wines. ACS Symposium Series, 2011, , 101-111.	0.5	2
124	Comparison between the contribution of ellagitannins of new oak barrels and one-year-used barrels. BIO Web of Conferences, 2016, 7, 02016.	0.1	2
125	Alternative amendment for vineyards from by-products of pyro-bituminous shale: Effect on wine amino acids and biogenic amines. Food Research International, 2017, 101, 239-248.	2.9	2
126	Phenolic compounds in juice of "lsabel―grape treated with abscisic acid for color improvement. BIO Web of Conferences, 2015, 5, 01014.	0.1	1

#	ARTICLE	IF	CITATIONS
127	Anthocyanin Composition of Melinis minutiflora Cultivated in Brazil. Revista Brasileira De Farmacognosia, 2021, 31, 112-115.	0.6	1
128	Control of postharvest gray mold of â€~BRS Nubia' table grape under cold storage. Semina:Ciencias Agrarias, 2020, 41, 3457-3465.	0.1	0
129	Elaboração e caracterização de fermentado alcoólico de jabuticaba (Plinia jaboticaba) produzido artesanalmente. Research, Society and Development, 2021, 10, e3010413799.	0.0	0