
## J. William O. Ballard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3524765/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                            | IF       | CITATIONS   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| 1 | Eye contact and sociability data suggests that Australian dingoes were never domesticated.<br>Environmental Epigenetics, 2022, 68, 423-432.        | 0.9      | 5           |
| 2 | What physiological role(s) does the alternative oxidase perform in animals?. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2022, 1863, 148556. | 0.5      | 12          |
| 3 | The Australian dingo is an early offshoot of modern breed dogs. Science Advances, 2022, 8, eabm5944.                                               | 4.7      | 14          |
| 4 | Ancestral dietary change alters the development of <i>Drosophila</i> larvae through MAPK signalling. Fly, 2022, 16, 298-310.                       | 0.9      | 2           |
| 5 | Metabolomics shows the Australian dingo has a unique plasma profile. Scientific Reports, 2021, 11, 5245.                                           | 1.6      | 2           |
| 6 | Chromosome-length genome assembly and structural variations of the primal Basenji dog (Canis lupus) Tj ETQq0                                       | 0.0 rgBT | Oygrlock 10 |
| 7 | Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. IScience, 2021, 24, 103308.            | 1.9      | 6           |
| 8 | Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA Part A: DNA<br>Mapping, Sequencing, and Analysis, 2020, 31, 355-364.   | 0.7      | 1           |
| 9 | Yin and Yang of mitochondrial ROS in Drosophila. Journal of Insect Physiology, 2020, 122, 104022.                                                  | 0.9      | 9           |

Canfam\_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus) Tj ETQq0.0 0 rgBT /Overlock

| 11 | Mitochondria, the gut microbiome and ROS. Cellular Signalling, 2020, 75, 109737.                                                                                                                                                                                                   | 1.7 | 65 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 12 | Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease.<br>International Journal of Molecular Sciences, 2019, 20, 1850.                                                                                                                        | 1.8 | 15 |
| 13 | The Australian dingo: untamed or feral?. Frontiers in Zoology, 2019, 16, 2.                                                                                                                                                                                                        | 0.9 | 22 |
| 14 | Nearâ€infrared spectroscopy for metabolite quantification and species identification. Ecology and Evolution, 2019, 9, 1336-1343.                                                                                                                                                   | 0.8 | 13 |
| 15 | Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations. Advances in Anatomy, Embryology and Cell Biology, 2019, 231, 51-74.                                                                                                                         | 1.0 | 4  |
| 16 | Stearic Acid Supplementation in High Protein to Carbohydrate (P:C) Ratio Diet Improves Physiological and Mitochondrial Functions of Drosophila melanogaster parkin Null Mutants. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1564-1572. | 1.7 | 10 |
| 17 | The Relationship Between Dietary Macronutrients and Hepatic Telomere Length in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 446-449.                                                                                         | 1.7 | 25 |
| 18 | Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genetics, 2018, 14, e1007735.                                                                                                                     | 1.5 | 46 |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult<br>Female Drosophila. Frontiers in Genetics, 2018, 9, 593.                                                                          | 1.1 | 7         |
| 20 | Dietary management and physical exercise can improve climbing defects and mitochondrial activity<br>in <i>Drosophila melanogaster parkin</i> null mutants. Fly, 2018, 12, 95-104.                                                      | 0.9 | 13        |
| 21 | Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE, 2018, 13, e0198754.                                                                                                                 | 1.1 | 22        |
| 22 | Cellular and population level processes influence the rate, accumulation and observed frequency of inherited and somatic mtDNA mutations. Mutagenesis, 2017, 32, 323-334.                                                              | 1.0 | 17        |
| 23 | Drosophila mitotypes determine developmental time in a diet and temperature dependent manner.<br>Journal of Insect Physiology, 2017, 100, 133-139.                                                                                     | 0.9 | 11        |
| 24 | The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities<br>for improvement with metabolism-altering drugs. Seizure: the Journal of the British Epilepsy<br>Association, 2017, 52, 15-19. | 0.9 | 51        |
| 25 | Conservation implications for dingoes from the maternal and paternal genome: Multiple populations, dog introgression, and demography. Ecology and Evolution, 2017, 7, 9787-9807.                                                       | 0.8 | 33        |
| 26 | Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS ONE, 2017, 12, e0187554.                                                                       | 1.1 | 31        |
| 27 | Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Frontiers in<br>Ecology and Evolution, 2016, 3, .                                                                                                 | 1.1 | 99        |
| 28 | Low protein to carbohydrate ratio diet delays onset of Parkinsonism like phenotype in Drosophila melanogaster parkin null mutants. Mechanisms of Ageing and Development, 2016, 160, 19-27.                                             | 2.2 | 13        |
| 29 | Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity, 2016, 117, 301-306.                                                                                                                                       | 1.2 | 70        |
| 30 | The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS<br>ONE, 2016, 11, e0166175.                                                                                                         | 1.1 | 10        |
| 31 | Assessing bioenergetic functions from isolated mitochondria in Drosophila melanogaster. Journal of<br>Biological Methods, 2016, 3, e42.                                                                                                | 1.0 | 13        |
| 32 | Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Oncotarget, 2016, 7, 7426-7440.                                                              | 0.8 | 32        |
| 33 | Review: can diet influence the selective advantage of mitochondrial DNA haplotypes?. Bioscience<br>Reports, 2015, 35, .                                                                                                                | 1.1 | 26        |
| 34 | The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.                                                 | 1.7 | 30        |
| 35 | Macronutrient balance, reproductive function, and lifespan in aging mice. Proceedings of the<br>National Academy of Sciences of the United States of America, 2015, 112, 3481-3486.                                                    | 3.3 | 194       |
| 36 | Regulation of Mitochondrial Genome Inheritance by Autophagy and Ubiquitin-Proteasome System:<br>Implications for Health, Fitness, and Fertility. BioMed Research International, 2014, 2014, 1-16.                                      | 0.9 | 37        |

| #  | Article                                                                                                                                                                                                                        | IF        | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 37 | Liver Aging and Pseudocapillarization in a Werner Syndrome Mouse Model. Journals of Gerontology -<br>Series A Biological Sciences and Medical Sciences, 2014, 69, 1076-1086.                                                   | 1.7       | 45             |
| 38 | Mitochondrial <scp>DNA</scp> : more than an evolutionary bystander. Functional Ecology, 2014, 28, 218-231.                                                                                                                     | 1.7       | 111            |
| 39 | The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and<br>Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.                                                          | 7.2       | 768            |
| 40 | Alpha-Synuclein Transmission and Mitochondrial Toxicity in Primary Human Foetal Enteric Neurons In<br>Vitro. Neurotoxicity Research, 2014, 25, 170-182.                                                                        | 1.3       | 25             |
| 41 | What can symbiont titres tell us about co-evolution of Wolbachia and their host?. Journal of<br>Invertebrate Pathology, 2014, 118, 20-27.                                                                                      | 1.5       | 14             |
| 42 | Assessment of temporal genetic variability of two epibenthic amphipod species in an eastern Australian<br>estuarine environment and their suitability as biological monitors. Australian Journal of Zoology,<br>2014, 62, 206. | 0.6       | 0              |
| 43 | Physiological adaptations to reproduction II. Mitochondrial adjustments in livers of lactating mice.<br>Journal of Experimental Biology, 2013, 216, 2889-95.                                                                   | 0.8       | 16             |
| 44 | Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. Journal of Bioenergetics and Biomembranes, 2013, 45, 25-35.                                                          | 1.0       | 39             |
| 45 | Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model Drosophila. Cell and Tissue Research, 2013, 353, 195-200.                                                                                     | 1.5       | 9              |
| 46 | The effects of temperature and diet on age grading and population age structure determination in Drosophila. Journal of Insect Physiology, 2013, 59, 994-1000.                                                                 | 0.9       | 10             |
| 47 | Differential survival and reproductive performance across three mitochondrial lineages in Melita plumulosa following naphthalene exposure. Chemosphere, 2013, 93, 1064-1069.                                                   | 4.2       | 3              |
| 48 | Uptake and mitochondrial dysfunction of alpha-synuclein in human astrocytes, cortical neurons and fibroblasts. Translational Neurodegeneration, 2013, 2, 20.                                                                   | 3.6       | 71             |
| 49 | Diet influences the intake target and mitochondrial functions of Drosophila melanogaster males.<br>Mitochondrion, 2013, 13, 817-822.                                                                                           | 1.6       | 42             |
| 50 | The impact of historic isolation on the population biogeography ofÂMelita plumulosa (Crustacea:) Tj ETQq0 0 0                                                                                                                  | rgBT /Ove | rloçk 10 Tf 50 |
| 51 | Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity, 2013, 110, 57-62.                                                             | 1.2       | 63             |
| 52 | Quaternary protein modeling to predict the function of DNA variation found in human mitochondrial cytochrome c oxidase. Journal of Human Genetics, 2013, 58, 127-134.                                                          | 1.1       | 6              |
| 53 | Using Near-Infrared Spectroscopy to Resolve the Species, Gender, Age, and the Presence of Wolbachia<br>Infection in Laboratory-Reared Drosophila. G3: Genes, Genomes, Genetics, 2012, 2, 1057-1065.                            | 0.8       | 34             |
|    | Walkashia ganadal density in famala and mala Dresenhila yany with laboratory adaptation and                                                                                                                                    |           |                |

Wolbachia gonadal density in female and male Drosophila vary with laboratory adaptation and54respond differently to physiological and environmental challenges. Journal of Invertebrate1.532Pathology, 2012, 111, 197-204.

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 1022-1035.                                                                                     | 1.7 | 111       |
| 56 | Mitochondrial DNA variants influence mitochondrial bioenergetics in Drosophila melanogaster.<br>Mitochondrion, 2012, 12, 459-464.                                                                                                                                 | 1.6 | 53        |
| 57 | Selective Enrichment and Sequencing of Whole Mitochondrial Genomes in the Presence of Nuclear<br>Encoded Mitochondrial Pseudogenes (Numts). PLoS ONE, 2012, 7, e37142.                                                                                            | 1.1 | 31        |
| 58 | Corroboration assessments and recent progress towards integrative systematics: a reply to Farris and Carpenter. Zootaxa, 2012, 3235, 65.                                                                                                                          | 0.2 | 0         |
| 59 | Phylogeography of the medically important mosquito <i>Aedes</i> ( <i>Ochlerotatus</i> )<br><i>vigilax</i> (Diptera: Culicidae) in Australasia. Journal of Biogeography, 2012, 39, 1333-1346.                                                                      | 1.4 | 14        |
| 60 | NATURALLY OCCURRING MITOCHONDRIAL DNA HAPLOTYPES EXHIBIT METABOLIC DIFFERENCES: INSIGHT<br>INTO FUNCTIONAL PROPERTIES OF MITOCHONDRIA. Evolution; International Journal of Organic<br>Evolution, 2012, 66, 3189-3197.                                             | 1.1 | 79        |
| 61 | Protein–protein interactions of the cytochrome <i>c</i> oxidase DNA barcoding region. Systematic<br>Entomology, 2012, 37, 229-236.                                                                                                                                | 1.7 | 6         |
| 62 | Mitochondrial DNA variants in Drosophila melanogaster are expressed at the level of the organismal phenotype. Mitochondrion, 2011, 11, 756-763.                                                                                                                   | 1.6 | 20        |
| 63 | Phylogenies with Corroboration Assessment. Zootaxa, 2011, 2946, 52.                                                                                                                                                                                               | 0.2 | 9         |
| 64 | EARLY LIFE BENEFITS AND LATER LIFE COSTS OF A TWO AMINO ACID DELETION IN <i>DROSOPHILA SIMULANS</i> . Evolution; International Journal of Organic Evolution, 2011, 65, 1400-1412.                                                                                 | 1.1 | 8         |
| 65 | Temporal and geographical genetic variation in the amphipod Melita plumulosa (Crustacea: Melitidae):<br>Link of a localized change in haplotype frequencies to a chemical spill. Chemosphere, 2011, 82,<br>1050-1055.                                             | 4.2 | 5         |
| 66 | Functional conservatism among <i>Drosophila simulans</i> flies experiencing different thermal regimes and mitochondrial DNA introgression. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 188-198.                    | 0.6 | 5         |
| 67 | Females With a Mutation in a Nuclear-Encoded Mitochondrial Protein Pay a Higher Cost of Survival<br>Than Do Males in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical<br>Sciences, 2011, 66A, 765-770.                              | 1.7 | 3         |
| 68 | Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations<br>of Drosophila simulans with divergent mitotypes. American Journal of Physiology - Regulatory<br>Integrative and Comparative Physiology, 2011, 301, R48-R59. | 0.9 | 59        |
| 69 | 10.1023/A:1018963131302.,2011,,.                                                                                                                                                                                                                                  |     | 3         |
| 70 | Linking the mitochondrial genotype to the organismal phenotype. Molecular Ecology, 2010, 19,<br>1523-1539.                                                                                                                                                        | 2.0 | 133       |
| 71 | Evidence of recent population expansion in the field cricket Teleogryllus commodus. Australian<br>Journal of Zoology, 2010, 58, 33.                                                                                                                               | 0.6 | 3         |
| 72 | Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of <i>Drosophila<br/>simulans</i> : evaluation of mitochondrial plasticity. Journal of Experimental Biology, 2010, 213,<br>1665-1675.                                                   | 0.8 | 71        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cost of a Naturally Occurring Two–Amino Acid Deletion in Cytochrome c Oxidase Subunit 7A in<br>Drosophila simulans. American Naturalist, 2010, 176, E98-E108.                                                                          | 1.0 | 11        |
| 74 | A Candidate Complex Approach to Study Functional Mitochondrial DNA Changes: Sequence Variation<br>and Quaternary Structure Modeling of Drosophila simulans Cytochrome c Oxidase. Journal of<br>Molecular Evolution, 2008, 66, 232-242. | 0.8 | 20        |
| 75 | Seasonal trade-off between starvation resistance and cold resistance in temperate wild-caught<br>Drosophila simulans. Australian Journal of Entomology, 2008, 47, 20-23.                                                               | 1.1 | 15        |
| 76 | Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. Science of the Total Environment, 2008, 403, 222-229.                                           | 3.9 | 15        |
| 77 | Validation of manometric microrespirometers for measuring oxygen consumption in small arthropods. Journal of Insect Physiology, 2008, 54, 1132-1137.                                                                                   | 0.9 | 11        |
| 78 | Starvation resistance is positively correlated with body lipid proportion in five wild caught Drosophila simulans populations. Journal of Insect Physiology, 2008, 54, 1371-1376.                                                      | 0.9 | 84        |
| 79 | Lifespan and reproduction in <i>Drosophila</i> : New insights from nutritional geometry.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2498-2503.                                     | 3.3 | 887       |
| 80 | Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. Insect Biochemistry and Molecular Biology, 2007, 37, 213-222.                                             | 1.2 | 36        |
| 81 | Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism. Insect Biochemistry and Molecular Biology, 2007, 37, 923-932.                                                        | 1.2 | 10        |
| 82 | Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in <i>Drosophila</i> . Insect Molecular Biology, 2007, 16, 799-802.                                                       | 1.0 | 98        |
| 83 | Sex differences in survival and mitochondrial bioenergetics during aging in <i>Drosophila</i> . Aging Cell, 2007, 6, 699-708.                                                                                                          | 3.0 | 45        |
| 84 | MITOCHONDRIAL DNA VARIATION IS ASSOCIATED WITH MEASURABLE DIFFERENCES IN LIFE-HISTORY TRAITS<br>AND MITOCHONDRIAL METABOLISM IN DROSOPHILA SIMULANS. Evolution; International Journal of<br>Organic Evolution, 2007, 61, 1735-1747.    | 1.1 | 94        |
| 85 | Working harder to stay alive: Metabolic rate increases with age in Drosophila simulans but does not correlate with life span. Journal of Insect Physiology, 2007, 53, 1300-1306.                                                       | 0.9 | 27        |
| 86 | Comparative Analysis of Mitochondrial Genotype and Aging. Annals of the New York Academy of Sciences, 2007, 1114, 93-106.                                                                                                              | 1.8 | 13        |
| 87 | Practical measures for combating communication system impairments caused by large magnetic storms. Radio Science, 2006, 41, n/a-n/a.                                                                                                   | 0.8 | 3         |
| 88 | Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught<br>Drosophila simulans. Aging Cell, 2006, 5, 225-233.                                                                                   | 3.0 | 44        |
| 89 | High divergence among Drosophila simulans mitochondrial haplogroups arose in midst of long term purifying selection. Molecular Phylogenetics and Evolution, 2005, 36, 328-337.                                                         | 1.2 | 17        |
| 90 | as a novel model for studying mitochondrial metabolism and aging. Experimental Gerontology, 2005,<br>40, 763-773.                                                                                                                      | 1.2 | 28        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 621-642.                                                                                     | 3.8 | 292       |
| 92  | Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global<br>abundance and population history in Drosophila simulans. Proceedings of the Royal Society B:<br>Biological Sciences, 2004, 271, 1197-1201. | 1.2 | 36        |
| 93  | The incomplete natural history of mitochondria. Molecular Ecology, 2004, 13, 729-744.                                                                                                                                                       | 2.0 | 1,767     |
| 94  | What maintains noncytoplasmic incompatibility inducingWolbachiain their hosts: a case study from a naturalDrosophila yakubapopulation. Journal of Evolutionary Biology, 2004, 17, 322-330.                                                  | 0.8 | 37        |
| 95  | Linking phylogenetics with population genetics to reconstruct the geographic origin of a species.<br>Molecular Phylogenetics and Evolution, 2004, 32, 998-1009.                                                                             | 1.2 | 64        |
| 96  | Sequential Evolution of a Symbiont Inferred From the Host: Wolbachia and Drosophila simulans.<br>Molecular Biology and Evolution, 2003, 21, 428-442.                                                                                        | 3.5 | 70        |
| 97  | Mitochondrial Genotype Affects Fitness in <i>Drosophila simulans</i> . Genetics, 2003, 164, 187-194.                                                                                                                                        | 1.2 | 115       |
| 98  | Influence of Two Wolbachia Strains on Population Structure of East African <i>Drosophila simulans</i> . Genetics, 2003, 165, 1959-1969.                                                                                                     | 1.2 | 64        |
| 99  | DIVERGENCE OF MITOCHONDRIAL DNA IS NOT CORROBORATED BY NUCLEAR DNA, MORPHOLOGY, OR<br>BEHAVIOR IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2002, 56,<br>527.                                             | 1.1 | 9         |
| 100 | Dynamics of double and single Wolbachia infections in Drosophila simulans from New Caledonia.<br>Heredity, 2002, 88, 182-189.                                                                                                               | 1.2 | 48        |
| 101 | DIVERGENCE OF MITOCHONDRIAL DNA IS NOT CORROBORATED BY NUCLEAR DNA, MORPHOLOGY, OR<br>BEHAVIOR IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2002, 56,<br>527-545.                                         | 1.1 | 119       |
| 102 | Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE Journal of<br>Oceanic Engineering, 2001, 26, 424-436.                                                                                                | 2.1 | 841       |
| 103 | The mitochondrial genome: mutation, selection and recombination. Current Opinion in Genetics and Development, 2001, 11, 667-672.                                                                                                            | 1.5 | 45        |
| 104 | Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans.<br>Entomologia Experimentalis Et Applicata, 2001, 98, 279-283.                                                                                       | 0.7 | 71        |
| 105 | When One Is Not Enough: Introgression of Mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 2000, 17, 1126-1130.                                                                                                             | 3.5 | 121       |
| 106 | EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661-1672.               | 1.1 | 111       |
| 107 | Comparative Genomics of Mitochondrial DNA in Members of the Drosophila melanogaster Subgroup.<br>Journal of Molecular Evolution, 2000, 51, 48-63.                                                                                           | 0.8 | 185       |
| 108 | Comparative Genomics of Mitochondrial DNA in Drosophila simulans. Journal of Molecular<br>Evolution, 2000, 51, 64-75.                                                                                                                       | 0.8 | 180       |

| #   | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661.                                                                                      | 1.1 | 17        |
| 110 | Distributional Evidence for Cospeciation between Neotropical Bats and their Bat Fly Ectoparasites.<br>Studies on Neotropical Fauna and Environment, 1998, 33, 76-84.                                                                                                                                          | 0.5 | 24        |
| 111 | Data Sets, Partitions, and Characters: Philosophies and Procedures for Analyzing Multiple Data Sets.<br>Systematic Biology, 1998, 47, 367-396.                                                                                                                                                                | 2.7 | 39        |
| 112 | Molecular systematics, morphological analysis, and hybrid crossing identify a third taxon, Aedes<br>(Halaedes) wardangensis sp.nov., of the Aedes (Halaedes) australis species-group (Diptera: Culicidae).<br>Canadian Journal of Zoology, 1998, 76, 1236-1246.                                               | 0.4 | 16        |
| 113 | Molecular systematics, morphological analysis, and hybrid crossing identify a third taxon,<br><i>Aedes</i> ( <i>Halaedes</i> ) <i>wardangensis</i> sp.nov., of the <i>Aedes</i> ( <i>Halaedes</i> )<br><i>australis</i> species-group (Diptera: Culicidae). Canadian Journal of Zoology, 1998, 76, 1236-1246. | 0.4 | 4         |
| 114 | A long-term investigation of the HF communication channel over middle- and high-latitude paths.<br>Radio Science, 1997, 32, 1705-1715.                                                                                                                                                                        | 0.8 | 21        |
| 115 | Is mitochondrial DNA a strictly neutral marker?. Trends in Ecology and Evolution, 1995, 10, 485-488.                                                                                                                                                                                                          | 4.2 | 236       |
| 116 | Evidence from 12S Ribosomal RNA Sequences Resolves a Morphological Conundrum in Austrosimulium<br>(Diptera: Simuliidae). Australian Journal of Entomology, 1994, 33, 131-135.                                                                                                                                 | 1.1 | 3         |
| 117 | Length Differences and Topology-dependent Tests: a Response to KÇersjö et al Cladistics, 1994, 10,<br>57-64.                                                                                                                                                                                                  | 1.5 | 24        |
| 118 | Phylogeny of Metarhizium: analysis of ribosomal DNA sequence data. Mycological Research, 1994, 98,<br>547-552.                                                                                                                                                                                                | 2.5 | 152       |
| 119 | LENGTH DIFFERENCES AND TOPOLOGYâ€ÐEPENDENT TESTS: A RESPONSE TO KÄLLERSJÖ ET AL Cladistics,<br>1994, 10, 57-64.                                                                                                                                                                                               | 1.5 | 14        |
| 120 | MONITORING BLACKFLY (DIPTERA: SIMULIIDAE) PESTS. Australian Journal of Entomology, 1992, 31, 263-270.                                                                                                                                                                                                         | 1.1 | 1         |
| 121 | Colonization of Perspex Strips by Larvae of Austrosimulium-Bancrofti (Taylor) Near Willawarin, Nsw.<br>Australian Journal of Zoology, 1991, 39, 201.                                                                                                                                                          | 0.6 | 0         |
| 122 | Colonization of perspex strips by larvae of Austrosimulium bancrofti (Taylor) near Ipswich,<br>Queensland. Hydrobiologia, 1991, 218, 255-263.                                                                                                                                                                 | 1.0 | 2         |
| 123 | Population cytogenetics of Austrosimulium bancrofti (Diptera: Simuliidae) in eastern Australia.<br>Genome, 1991, 34, 338-353.                                                                                                                                                                                 | 0.9 | 8         |
| 124 | Differences in trap-finding behaviour of two populations of Austrosimulium bancrofti (Taylor)<br>(Diptera: Simuliidae) in eastern Australia. Canadian Journal of Zoology, 1990, 68, 579-584.                                                                                                                  | 0.4 | 4         |
| 125 | Factors influencing silhouette-trap captures of the blackfly Austrosimulium bancrofti (Taylor)<br>(Diptera: Simuliidae) in the Australian Capital Territory. Bulletin of Entomological Research, 1989, 79,<br>421-428.                                                                                        | 0.5 | 9         |
| 126 | Factors influencing silhouette trap captures of the blackfly Austrosimulium bancrofti in Queensland,<br>Australia. Medical and Veterinary Entomology, 1988, 2, 371-378.                                                                                                                                       | 0.7 | 5         |

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A simple technique for sexing blackfly larvae of the taxon Austrosimulium bancrofti. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1988, 82, 478. | 0.7 | 0         |