
## Carla Patricia Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3524159/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution, 2012, 165, 38-58.                                                                         | 3.7 | 265       |
| 2  | Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken?. Bioresource Technology, 2018, 250, 888-901.                     | 4.8 | 67        |
| 3  | Photodegradation of sulfamethoxazole in environmental samples: The role of pH, organic matter and salinity. Science of the Total Environment, 2019, 648, 1403-1410.                                   | 3.9 | 60        |
| 4  | Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An<br>alternative waste management strategy. Journal of Environmental Management, 2017, 188, 203-211.         | 3.8 | 55        |
| 5  | Development of ELISA methodologies for the direct determination of 17β-estradiol and<br>17α-ethinylestradiol in complex aqueous matrices. Journal of Environmental Management, 2013, 124,<br>121-127. | 3.8 | 52        |
| 6  | Low cost methodology for estrogens monitoring in water samples using dispersive liquid–liquid<br>microextraction and HPLC with fluorescence detection. Talanta, 2013, 115, 980-985.                   | 2.9 | 49        |
| 7  | Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. Journal of Hazardous Materials, 2019, 370, 212-218.    | 6.5 | 48        |
| 8  | Single and multi-component adsorption of psychiatric pharmaceuticals onto alternative and commercial carbons. Journal of Environmental Management, 2017, 192, 15-24.                                  | 3.8 | 45        |
| 9  | Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. Environmental Science and Pollution Research, 2019, 26, 13173-13184.     | 2.7 | 43        |
| 10 | Obtaining granular activated carbon from paper mill sludge – A challenge for application in the removal of pharmaceuticals from wastewater. Science of the Total Environment, 2019, 653, 393-400.     | 3.9 | 43        |
| 11 | Biochar-TiO2 magnetic nanocomposites for photocatalytic solar-driven removal of antibiotics from aquaculture effluents. Journal of Environmental Management, 2021, 294, 112937.                       | 3.8 | 37        |
| 12 | Effect of natural aquatic humic substances on the photodegradation of estrone. Chemosphere, 2016, 145, 249-255.                                                                                       | 4.2 | 31        |
| 13 | Effect of the surface functionalization of a waste-derived activated carbon on pharmaceuticals' adsorption from water. Journal of Molecular Liquids, 2020, 299, 112098.                               | 2.3 | 28        |
| 14 | Photosensitized Degradation of 17β-estradiol and 17α-ethinylestradiol: Role of Humic Substances<br>Fractions. Journal of Environmental Quality, 2016, 45, 693-700.                                    | 1.0 | 26        |
| 15 | Evaluation of the anthropogenic input of caffeine in surface waters of the north and center of Portugal by ELISA. Science of the Total Environment, 2014, 479-480, 227-232.                           | 3.9 | 24        |
| 16 | Application of dispersive liquid–liquid microextraction for estrogens׳ quantification by enzyme-linked<br>immunosorbent assay. Talanta, 2014, 125, 102-106.                                           | 2.9 | 23        |
| 17 | Photodegradation behaviour of estriol: An insight on natural aquatic organic matter influence.<br>Chemosphere, 2016, 159, 545-551.                                                                    | 4.2 | 23        |
| 18 | Antibiotics in Aquaculture Wastewater: Is It Feasible to Use a Photodegradation-Based Treatment for<br>Their Removal?. Toxics, 2021, 9, 194.                                                          | 1.6 | 23        |

CARLA PATRICIA SILVA

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fixed-bed performance of a waste-derived granular activated carbon for the removal of micropollutants from municipal wastewater. Science of the Total Environment, 2019, 683, 699-708.                                                              | 3.9 | 22        |
| 20 | Structural considerations on the selectivity of an immunoassay for sulfamethoxazole. Talanta, 2016, 158, 198-207.                                                                                                                                   | 2.9 | 21        |
| 21 | Photodegradation of sulfadiazine in different aquatic environments – Evaluation of influencing factors. Environmental Research, 2020, 188, 109730.                                                                                                  | 3.7 | 21        |
| 22 | Dispersive liquid-liquid microextraction for the quantification of venlafaxine in environmental waters. Journal of Environmental Management, 2018, 217, 71-77.                                                                                      | 3.8 | 20        |
| 23 | Glassy carbon electrodes coated with poly(allylamine hydrochloride), PAH: Characterization studies and application to ion-exchange voltammetry of trace lead(II) at combined PAH/mercury film electrodes. Electrochimica Acta, 2006, 52, 1182-1190. | 2.6 | 18        |
| 24 | Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended<br>luvisol soil. Talanta, 2011, 85, 1494-1499.                                                                                                         | 2.9 | 18        |
| 25 | Evaluation of poly(sodium 4-styrenesulfonate) film coating in thin mercury film electrodes for lead determination. Journal of Electroanalytical Chemistry, 2009, 626, 192-196.                                                                      | 1.9 | 13        |
| 26 | Oxolinic acid in aquaculture waters: Can natural attenuation through photodegradation decrease its concentration?. Science of the Total Environment, 2020, 749, 141661.                                                                             | 3.9 | 11        |
| 27 | Comparison between MEKC and UV spectral deconvolution to follow sorption experiment in soil.<br>Talanta, 2010, 81, 1489-1493.                                                                                                                       | 2.9 | 10        |
| 28 | Sulfadiazine's photodegradation using a novel magnetic and reusable carbon based photocatalyst:<br>Photocatalytic efficiency and toxic impacts to marine bivalves. Journal of Environmental Management,<br>2022, 313, 115030.                       | 3.8 | 10        |
| 29 | ELISA as an effective tool to determine spatial and seasonal occurrence of emerging contaminants in the aquatic environment. Analytical Methods, 2020, 12, 2517-2526.                                                                               | 1.3 | 8         |
| 30 | Photodegradation of Aquaculture Antibiotics Using Carbon Dots-TiO2 Nanocomposites. Toxics, 2021, 9, 330.                                                                                                                                            | 1.6 | 8         |
| 31 | Sulfamethoxazole exposure to simulated solar radiation under continuous flow mode: Degradation and antibacterial activity. Chemosphere, 2020, 238, 124613.                                                                                          | 4.2 | 7         |
| 32 | Bleeding Evaluation of Different SPE Cartridges on Clean-Up of Atrazine From Aqueous Samples<br>Containing Organic Matter. Chromatographia, 2011, 74, 725-729.                                                                                      | 0.7 | 1         |