
Steffen P Graether

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3523661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods for recombinant production and purification of intrinsically disordered proteins. , 2022, , 41-48.		0
2	The Disordered Dehydrin and Its Role in Plant Protection: A Biochemical Perspective. Biomolecules, 2022, 12, 294.	4.0	24
3	The Halophyte Dehydrin Sequence Landscape. Biomolecules, 2022, 12, 330.	4.0	5
4	Changing Bimodal Grade Distributions – A Missed Opportunity?. International Journal of Higher Education, 2022, 11, 70.	0.5	0
5	Physiological, Structural, and Functional Insights Into the Cryoprotection of Membranes by the Dehydrins. Frontiers in Plant Science, 2022, 13, 886525.	3.6	5
6	LEAfing through literature: late embryogenesis abundant proteins coming of age—achievements and perspectives. Journal of Experimental Botany, 2022, 73, 6525-6546.	4.8	24
7	The Sequence, Structure and Function of the Plant Stress Protein LEA3. Biophysical Journal, 2021, 120, 32a.	0.5	0
8	The in vitro structure and functions of the disordered late embryogenesis abundant three proteins. Protein Science, 2021, 30, 678-692.	7.6	5
9	Phosphorylationâ€dependent control of Activityâ€regulated cytoskeletonâ€associated protein (Arc) protein by TNIK. Journal of Neurochemistry, 2021, 158, 1058-1073.	3.9	7
10	Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. PLoS ONE, 2020, 15, e0237177.	2.5	12
11	Effect of in vitro cold acclimation of Deschampsia antarctica on the accumulation of proteins with antifreeze activity. Journal of Experimental Botany, 2020, 71, 2933-2942.	4.8	5
12	Expression and Purification of an Intrinsically Disordered Protein. Methods in Molecular Biology, 2020, 2141, 181-194.	0.9	4
13	Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. , 2020, 15, e0237177.		0
14	Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. , 2020, 15, e0237177.		0
15	Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. , 2020, 15, e0237177.		0
16	Conserved sequence motifs in the abiotic stress response protein late embryogenesis abundant 3. , 2020, 15, e0237177.		0
17	Editorial: Bioprospecting and Biotechnology of Extremophiles. Frontiers in Bioengineering and Biotechnology, 2019, 7, 204.	4.1	27
18	The Importance of Sequence Order Versus Composition in the Cryoprotective Function of an Intrinsically Disordered Protein. Biophysical Journal, 2019, 116, 201a.	0.5	0

STEFFEN P GRAETHER

#	Article	IF	CITATIONS
19	Binding of a Vitis riparia dehydrin to DNA. Plant Science, 2019, 287, 110172.	3.6	25
20	Sequence composition versus sequence order in the cryoprotective function of an intrinsically disordered stressâ€response protein. Protein Science, 2019, 28, 1448-1459.	7.6	10
21	Troubleshooting Guide to Expressing Intrinsically Disordered Proteins for Use in NMR Experiments. Frontiers in Molecular Biosciences, 2019, 5, 118.	3.5	14
22	Testing the rogue taxa hypothesis for clustering instability. Journal of Theoretical Biology, 2019, 472, 36-45.	1.7	1
23	Evolution of the modular, disordered stress proteins known as dehydrins. PLoS ONE, 2019, 14, e0211813.	2.5	28
24	Perception of Biology Instructors on Using Student Evaluations to Inform Their Teaching. International Journal of Higher Education, 2019, 8, 133.	0.5	5
25	Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles, 2018, 22, 537-552.	2.3	19
26	Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). Journal of Thermal Biology, 2018, 74, 133-139.	2.5	16
27	Effect of an Intrinsically Disordered Plant Stress Protein on the Properties of Water. Biophysical Journal, 2018, 115, 1696-1706.	0.5	23
28	Data driven point packing for fast clustering. , 2018, , .		3
29	CRISPR-induced null alleles show that <i>>Frost</i> > protects <i>>Drosophila melanogaster</i> > reproduction after cold exposure. Journal of Experimental Biology, 2017, 220, 3344-3354.	1.7	9
30	In vivo evidence for homo- and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18. Scientific Reports, 2017, 7, 17036.	3.3	39
31	An Analysis of the Perceptions and Resources of Large University Classes. CBE Life Sciences Education, 2017, 16, ar33.	2.3	22
32	Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biology, 2017, 40, 1319-1331.	1.2	27
33	Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants. Frontiers in Plant Science, 2017, 8, 709.	3.6	48
34	Conway crossover to create hyperdimensional point packings, with applications. , 2016, , .		11
35	Properties and biotechnological applications of ice-binding proteins in bacteria. FEMS Microbiology Letters, 2016, 363, fnw099.	1.8	38
36	Structure of an Intrinsically Disordered Stress Protein Alone and Bound to a Membrane Surface. Biophysical Journal, 2016, 111, 480-491.	0.5	22

STEFFEN P GRAETHER

#	Article	IF	CITATIONS
37	Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif. Frontiers in Plant Science, 2015, 6, 702.	3.6	26
38	Structural and Functional Insights into the Cryoprotection of Membranes by the Intrinsically Disordered Dehydrins. Journal of Biological Chemistry, 2015, 290, 26900-26913.	3.4	45
39	A dehydrin-dehydrin interaction: the case of SK3 from Opuntia streptacantha. Frontiers in Plant Science, 2014, 5, 520.	3.6	51
40	Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science, 2014, 5, 576.	3.6	246
41	The Importance of Size and Disorder in the Cryoprotective Effects of Dehydrins Â. Plant Physiology, 2013, 163, 1376-1386.	4.8	97
42	Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Science, 2011, 20, 42-50.	7.6	94
43	Increased flexibility decreases antifreeze protein activity. Protein Science, 2010, 19, 2356-2365.	7.6	10
44	Structures and ice-binding faces of the alanine-rich type I antifreeze proteinsThis paper is one of a selection of papers published in this special issue entitled "Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases― and has undergone the Journal's usual peer review process Biochemistry and Cell Biology, 2010, 88, 223-229.	2.0	27
45	Structural Characterization of Amyloidotic Antifreeze Protein Fibrils and Intermediates. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 1030-1033.	2.3	4
46	NMR assignments of the intrinsically disordered K2 and YSK2 dehydrins. Biomolecular NMR Assignments, 2009, 3, 273-275.	0.8	23
47	Differential stability of the bovine prion protein upon urea unfolding. Protein Science, 2009, 18, 2172-2182.	7.6	30
48	Obtaining highly purified intrinsically disordered protein by boiling lysis and single step ion exchange. Analytical Biochemistry, 2009, 392, 70-76.	2.4	56
49	Monitoring Prion Protein Stability by NMR. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2009, 72, 1069-1074.	2.3	4
50	Effect of a mutation on the structure and dynamics of an α-helical antifreeze protein in water and ice. Proteins: Structure, Function and Bioinformatics, 2006, 63, 603-610.	2.6	7
51	A 1H/19F minicoil NMR probe for solid-state NMR: Application to 5-fluoroindoles. Journal of Magnetic Resonance, 2006, 178, 65-71.	2.1	11
52	Cold survival in freeze-intolerant insects. FEBS Journal, 2004, 271, 3285-3296.	0.2	117
53	Hydrogen Bonding on the Ice-Binding Face of a β-Helical Antifreeze Protein Indicated by Amide Proton NMR Chemical Shiftsâ€. Biochemistry, 2004, 43, 13012-13017.	2.5	14
54	Spruce Budworm Antifreeze Protein: Changes in Structure and Dynamics at Low Temperature. Journal of Molecular Biology, 2003, 327, 1155-1168.	4.2	32

STEFFEN P GRAETHER

#	Article	IF	CITATIONS
55	Freezing of a Fish Antifreeze Protein Results in Amyloid Fibril Formation. Biophysical Journal, 2003, 84, 552-557.	0.5	35
56	Structure of Type I Antifreeze Protein and Mutants in Supercooled Water. Biophysical Journal, 2001, 81, 1677-1683.	0.5	36
57	Modeling Pseudomonas syringae Ice-Nucleation Protein as aβ-Helical Protein. Biophysical Journal, 2001, 80, 1169-1173.	0.5	87
58	Surviving winter with antifreeze proteins. , 2001, , 199-211.		6
59	Structure-function relationships in spruce budworm antifreeze protein revealed by isoform diversity. FEBS Journal, 2000, 267, 6082-6088.	0.2	58
60	β-Helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature, 2000, 406, 325-328.	27.8	410
61	Quantitative and Qualitative Analysis of Type III Antifreeze Protein Structure and Function. Journal of Biological Chemistry, 1999, 274, 11842-11847.	3.4	72
62	Crystallization and Preliminary X-Ray Crystallographic Analysis of Spruce Budworm Antifreeze Protein. Journal of Structural Biology, 1999, 126, 72-75.	2.8	5
63	Tryptophan Residues in Caldesmon Are Major Determinants for Calmodulin Binding. Biochemistry, 1997, 36, 364-369.	2.5	28
64	Early detection of inflammation-associated amyloid in murine spleen using thioflavin T fluorescence of spleen homogenates: Implications for amyloidogenesis. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1996, 3, 20-27.	3.0	5