Bernat Soria

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3523503/bernat-soria-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 176 46 7,335 h-index g-index citations papers 8,047 184 4.7 5.54 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
176	Mesenchymal Stromal Cells for COVID-19 Critical Care Patients 2022 , 1-29		
175	Human Omental Mesothelial Cells Impart an Immunomodulatory Landscape Impeding B- and T-Cell Activation. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 5924	6.3	0
174	Considerations for Clinical Use of Mesenchymal Stromal Cells 2022 , 1-52		
173	A Phase I/II Dose-Escalation Multi-Center Study to Evaluate the Safety of Infusion of Natural Killer Cells or Memory T Cells As Adoptive Therapy in Coronavirus Pneumonia and/or Lymphopenia: (RELEASE NCT04578210). <i>Blood</i> , 2021 , 138, 1765-1765	2.2	1
172	A new shortened protocol to obtain islet-like cells from hESC-derived ductal cells. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 2021 , 57, 587-597	2.6	
171	Efficacy and safety of intramuscular administration of allogeneic adipose tissue derived and expanded mesenchymal stromal cells in diabetic patients with critical limb ischemia with no possibility of revascularization: study protocol for a randomized controlled double-blind phase II clinical trial (The NOMA Trial). Trials, 2021, 22, 595	2.8	1
170	Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study. <i>EClinicalMedicine</i> , 2020 , 25, 100	04 5 4 ^{.3}	87
169	Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 43	5.8	85
168	Generation of pancreatic islets from stem cells 2020 , 657-664		
167	AICAR Stimulates the Pluripotency Transcriptional Complex in Embryonic Stem Cells Mediated by PI3K, GSK3[] and []-Catenin. <i>ACS Omega</i> , 2020 , 5, 20270-20282	3.9	1
166	Mesenchymal Stromal Cell-Based Therapies as Promising Treatments for Muscle Regeneration After Snakebite Envenoming. <i>Frontiers in Immunology</i> , 2020 , 11, 609961	8.4	1
165	Cost-Effective, Safe, and Personalized Cell Therapy for Critical Limb Ischemia in Type 2 Diabetes Mellitus. <i>Frontiers in Immunology</i> , 2019 , 10, 1151	8.4	26
164	Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy. <i>Frontiers in Cellular Neuroscience</i> , 2019 , 13, 204	6.1	26
163	Dissecting the Brain/Islet Axis in Metabesity. <i>Genes</i> , 2019 , 10,	4.2	7
162	Corneal Regeneration: Use of Extracorneal Stem Cells. <i>Essentials in Ophthalmology</i> , 2019 , 123-144	0.2	3
161	Stem Cells: Concept, Properties, and Characterization. <i>Essentials in Ophthalmology</i> , 2019 , 41-55	0.2	0
160	Extra virgin olive oil diet intervention improves insulin resistance and islet performance in diet-induced diabetes in mice. <i>Scientific Reports</i> , 2019 , 9, 11311	4.9	16

(2016-2019)

159	Oestrogen receptor Imediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. <i>Diabetologia</i> , 2019 , 62, 1667-1680	10.3	17
158	Inadequate control of thyroid hormones sensitizes to hepatocarcinogenesis and unhealthy aging. <i>Aging</i> , 2019 , 11, 7746-7779	5.6	5
157	Corneal Stem Cells: Identification and Methods of Ex Vivo Expansion. <i>Essentials in Ophthalmology</i> , 2019 , 57-75	0.2	
156	LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. <i>Nature Communications</i> , 2018 , 9, 1488	17.4	31
155	The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. <i>Cell Death and Disease</i> , 2018 , 9, 279	9.8	24
154	GATA6 Controls Insulin Biosynthesis and Secretion in Adult I ⁻ Cells. <i>Diabetes</i> , 2018 , 67, 448-460	0.9	15
153	Adipose-derived mesenchymal stem cells (AdMSC) for the treatment of secondary-progressive multiple sclerosis: A triple blinded, placebo controlled, randomized phase I/II safety and feasibility study. <i>PLoS ONE</i> , 2018 , 13, e0195891	3.7	80
152	miR-7 Modulates hESC Differentiation into Insulin-Producing Beta-like Cells and Contributes to Cell Maturation. <i>Molecular Therapy - Nucleic Acids</i> , 2018 , 12, 463-477	10.7	25
151	PDGF Restores the Defective Phenotype of Adipose-Derived Mesenchymal Stromal Cells from Diabetic Patients. <i>Molecular Therapy</i> , 2018 , 26, 2696-2709	11.7	25
150	Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis. <i>PLoS ONE</i> , 2017 , 12, e0187547	3.7	13
149	An extra virgin olive oil rich diet intervention ameliorates the nonalcoholic steatohepatitis induced by a high-fat "Western-type" diet in mice. <i>Molecular Nutrition and Food Research</i> , 2017 , 61, 1600549	5.9	33
148	Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	34
147	Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. <i>World Journal of Stem Cells</i> , 2017 , 9, 26-36	5.6	5
146	Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation. <i>Journal of Cellular Biochemistry</i> , 2016 , 117, 2078-88	4.7	13
145	Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD) for monogenic disorder. <i>Stem Cell Research</i> , 2016 , 16, 635-9	1.6	1
144	Impact of transient down-regulation of DREAM in human embryonic stem cell pluripotency: The role of DREAM in the maintenance of hESCs. <i>Stem Cell Research</i> , 2016 , 16, 568-78	1.6	4
143	Differentiation of Mouse Embryonic Stem Cells toward Functional Pancreatic I-Cell Surrogates through Epigenetic Regulation of Pdx1 by Nitric Oxide. <i>Cell Transplantation</i> , 2016 , 25, 1879-1892	4	9
142	Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells. Differentiation, 2016 , 92, 249-256	3.5	6

141	A Role for the Host in the Roadmap to Diabetes Stem Cell Therapy. <i>Diabetes</i> , 2016 , 65, 1155-7	0.9	8
140	Using stem cells to produce insulin. Expert Opinion on Biological Therapy, 2015, 15, 1469-89	5.4	15
139	Regulation of Pancreatic Islet Formation 2015 , 109-128		2
138	PAX4 Defines an Expandable I-Cell Subpopulation in the Adult Pancreatic Islet. <i>Scientific Reports</i> , 2015 , 5, 15672	4.9	28
137	Nitric Oxide And Hypoxia Response In Pluripotent Stem Cells. <i>Redox Biology</i> , 2015 , 5, 417-418	11.3	3
136	Umbilical cord blood plasma contains soluble NKG2D ligands that mediate loss of natural killer cell function and cytotoxicity. <i>European Journal of Immunology</i> , 2015 , 45, 2324-34	6.1	16
135	Role of nitric oxide in the maintenance of pluripotency and regulation of the hypoxia response in stem cells. <i>World Journal of Stem Cells</i> , 2015 , 7, 605-17	5.6	19
134	Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates. <i>Frontiers in Bioengineering and Biotechnology</i> , 2015 , 3, 117	5.8	17
133	Resveratrol ameliorates the maturation process of Dcell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells. <i>PLoS ONE</i> , 2015 , 10, e0119904	3.7	26
132	Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model. <i>PLoS ONE</i> , 2015 , 10, e0138623	3.7	7
131	Bottlenecks in the Efficient Use of Advanced Therapy Medicinal Products Based on Mesenchymal Stromal Cells. <i>Stem Cells International</i> , 2015 , 2015, 895714	5	46
130	L-Type Ca(2+) Channels and SK Channels in Mouse Embryonic Stem Cells and Their Contribution to Cell Proliferation. <i>Journal of Membrane Biology</i> , 2015 , 248, 671-82	2.3	3
129	Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2014 , 86, 459-68	5.7	26
128	Generation of Pancreatic Islets from Stem Cells 2014 , 837-847		4
127	GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. <i>Hepatology</i> , 2014 , 59, 2358-70	11.2	37
126	Mesothelial cells: a cellular surrogate for tissue engineering of corneal endothelium 2014 , 55, 5967-78		18
125	Transcriptional control of mammalian pancreas organogenesis. <i>Cellular and Molecular Life Sciences</i> , 2014 , 71, 2383-402	10.3	53
124	Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. <i>Islets</i> , 2014 , 6, e995997	2	6

(2011-2014)

123	EGF-induced adipose tissue mesothelial cells undergo functional vascular smooth muscle differentiation. <i>Cell Death and Disease</i> , 2014 , 5, e1304	9.8	13	
122	Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis. <i>Nutrients</i> , 2014 , 6, 5338-69	6.7	52	
121	Transient Downregulation of Nanog and Oct4 Induced by DETA/NO Exposure in Mouse Embryonic Stem Cells Leads to Mesodermal/Endodermal Lineage Differentiation. <i>Stem Cells International</i> , 2014 , 2014, 379678	5	7	
120	Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. <i>Stem Cells and Development</i> , 2014 , 23, 1074-83	4.4	30	
119	Regulation of Pancreatic Islet Formation 2014 , 1-19			
118	Development of a cell-based medicinal product: regulatory structures in the European Union. <i>British Medical Bulletin</i> , 2013 , 105, 85-105	5.4	35	
117	Single mechanosensitive and Call+-sensitive channel currents recorded from mouse and human embryonic stem cells. <i>Journal of Membrane Biology</i> , 2013 , 246, 215-30	2.3	14	
116	Costes directos de la diabetes mellitus y de sus complicaciones en Espa (Estudio SECCAID: Spain estimated cost Ciberdem-Cabimer in Diabetes). <i>Avances En Diabetolog</i> 2013 , 29, 182-189		53	
115	Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. <i>Diabetes</i> , 2013 , 62, 4266-9	0.9	46	
114	Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. <i>Cell Death and Disease</i> , 2013 , 4, e570	9.8	18	
113	Dual Trade of Bcl-2 and Bcl-xL in islet physiology: balancing life and death with metabolism secretion coupling. <i>Diabetes</i> , 2013 , 62, 18-21	0.9	4	
112	Directed pancreatic acinar differentiation of mouse embryonic stem cells via embryonic signalling molecules and exocrine transcription factors. <i>PLoS ONE</i> , 2013 , 8, e54243	3.7	10	
111	Functional vascular smooth muscle-like cells derived from adult mouse uterine mesothelial cells. <i>PLoS ONE</i> , 2013 , 8, e55181	3.7	21	
110	Regulation of pancreatic Dcell survival by nitric oxide: clinical relevance. <i>Islets</i> , 2012 , 4, 108-18	2	24	
109	The immortal strand hypothesis: still non-randomly segregating opinions. <i>Biomolecular Concepts</i> , 2012 , 3, 203-11	3.7	3	
108	GATA4 and GATA6 control mouse pancreas organogenesis. <i>Journal of Clinical Investigation</i> , 2012 , 122, 3504-15	15.9	108	
107	Cryobanking the genetic diversity in the critically endangered Iberian lynx (Lynx pardinus) from skin biopsies. Investigating the cryopreservation and culture ability of highly valuable explants and cells. <i>Cryobiology</i> , 2011 , 62, 145-51	2.7	12	
106	Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. <i>Cell Transplantation</i> , 2011 20, 1629-39	4	63	

105	Monoclonal antibody that recognizes a domain on heterogeneous nuclear ribonucleoprotein K and PTB-associated splicing factor. <i>Hybridoma</i> , 2011 , 30, 53-9		2
104	Nitric oxide repression of Nanog promotes mouse embryonic stem cell differentiation. <i>Cell Death and Differentiation</i> , 2010 , 17, 1025-33	12.7	51
103	Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. <i>Cell Death and Disease</i> , 2010 , 1, e80	9.8	49
102	Pancreatic islet cells: a model for calcium-dependent peptide release. <i>HFSP Journal</i> , 2010 , 4, 52-60		7
101	Islet cell development. Advances in Experimental Medicine and Biology, 2010, 654, 59-75	3.6	19
100	Sirtuin 1 regulation of developmental genes during differentiation of stem cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13736-41	11.5	134
99	The immune boundaries for stem cell based therapies: problems and prospective solutions. <i>Journal of Cellular and Molecular Medicine</i> , 2009 , 13, 1464-75	5.6	31
98	Lysophosphatidic acid induces Ca2+ mobilization and c-Myc expression in mouse embryonic stem cells via the phospholipase C pathway. <i>Cellular Signalling</i> , 2009 , 21, 523-8	4.9	31
97	Taurine supplementation modulates glucose homeostasis and islet function. <i>Journal of Nutritional Biochemistry</i> , 2009 , 20, 503-11	6.3	105
96	A refined characterisation of the NeoHepatocyte phenotype necessitates a reappraisal of the transdifferentiation hypothesis. <i>Differentiation</i> , 2009 , 77, 263-76	3.5	6
95	Developing biological resource banks as a supporting tool for wildlife reproduction and conservation The Iberian lynx bank as a model for other endangered species. <i>Animal Reproduction Science</i> , 2009 , 112, 347-61	2.1	52
94	Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells. <i>Experimental Cell Research</i> , 2008 , 314, 969-74	4.2	46
93	Nitric oxide mediates the survival action of IGF-1 and insulin in pancreatic beta cells. <i>Cellular Signalling</i> , 2008 , 20, 301-10	4.9	15
92	Toward cell-based therapy of type I diabetes. <i>Trends in Immunology</i> , 2008 , 29, 68-74	14.4	33
91	Cell therapy for diabetes mellitus: an opportunity for stem cells?. <i>Cells Tissues Organs</i> , 2008 , 188, 70-7	2.1	18
90	Generation of Insulin-Producing Cells from Stem Cells. <i>Novartis Foundation Symposium</i> , 2008 , 158-173		3
89	Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state. <i>Journal of Cellular Physiology</i> , 2008 , 214, 354-62	7	64
88	Cancer genes hypermethylated in human embryonic stem cells. <i>PLoS ONE</i> , 2008 , 3, e3294	3.7	63

87	Software for simulating calcium-triggered exocytotic processes. <i>American Journal of Physiology - Cell Physiology</i> , 2007 , 292, C749-55	5.4	2
86	Stem Cell Approaches forCell Replacement 2007 , 311-325		
85	Generation of Islets from Stem Cells 2007 , 605-618		1
84	A halocin acting on Na+/H+ exchanger of haloarchaea as a new type of inhibitor in NHE of mammals. <i>Journal of Physiology and Biochemistry</i> , 2006 , 62, 253-62	5	27
83	Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alphaand beta-cells within intact human islets of Langerhans. <i>Diabetes</i> , 2006 , 55, 2463-9	0.9	80
82	Different metabolic responses in alpha-, beta-, and delta-cells of the islet of Langerhans monitored by redox confocal microscopy. <i>Biophysical Journal</i> , 2006 , 90, 2641-50	2.9	47
81	Isolation and characterization of residual undifferentiated mouse embryonic stem cells from embryoid body cultures by fluorescence tracking. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 2006 , 42, 115-23	2.6	37
80	Role of small bioorganic molecules in stem cell differentiation to insulin-producing cells. <i>Bioorganic and Medicinal Chemistry</i> , 2006 , 14, 6466-74	3.4	16
79	Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. <i>Stem Cells</i> , 2006 , 24, 258-65	5.8	94
78	Internal assessment of a novel islet isolation facility in Spain. <i>Transplantation Proceedings</i> , 2005 , 37, 34	04-6	1
77	Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. <i>Transplant Immunology</i> , 2005 , 15, 113-29	1.7	35
76	Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. <i>Gastroenterology</i> , 2005 , 128, 1774-86	13.3	168
75	Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. <i>Environmental Health Perspectives</i> , 2005 , 113, 969-77	8.4	211
74	Gastrointestinal stem cells. I. Pancreatic stem cells. <i>American Journal of Physiology - Renal Physiology</i> , 2005 , 289, G177-80	5.1	12
73	Ectodermal commitment of insulin-producing cells derived from mouse embryonic stem cells. <i>FASEB Journal</i> , 2005 , 19, 1341-3	0.9	42
72	Differentiation of Human Embryonic, Fetal and Adult Stem Cells to Islet Cells of the Pancreas 2005 , 32	5-344	
71	OVERVIEW OF PROGRESS IN THE DIFFERENTIATION OF EMBRYONIC STEM CELLS INTO PANCREATIC BETA-CELL DERIVATIVES 2005 , 205-219		
70	Generation of insulin-producing cells from stem cells. <i>Novartis Foundation Symposium</i> , 2005 , 265, 158-67; discussion 167-73, 204-11		1

69	Novel players in pancreatic islet signaling: from membrane receptors to nuclear channels. <i>Diabetes</i> , 2004 , 53 Suppl 1, S86-91	0.9	18
68	Generation of new islets from stem cells. <i>Cell Biochemistry and Biophysics</i> , 2004 , 40, 113-24	3.2	5
67	Generation of new islets from stem cells. Cell Biochemistry and Biophysics, 2004, 2004, 113-123	3.2	
66	In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. <i>Diabetologia</i> , 2004 , 47, 1442-51	10.3	127
65	Estrogen and xenoestrogen actions on endocrine pancreas: from ion channel modulation to activation of nuclear function. <i>Steroids</i> , 2004 , 69, 531-6	2.8	56
64	Nutrients induce different Ca(2+) signals in cytosol and nucleus in pancreatic beta-cells. <i>Diabetes</i> , 2004 , 53 Suppl 1, S92-5	0.9	14
63	Intracellular location of KATP channels and sulphonylurea receptors in the pancreatic beta-cell: new targets for oral antidiabetic agents. <i>Current Medicinal Chemistry</i> , 2004 , 11, 2707-16	4.3	11
62	Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. <i>Biochemical Journal</i> , 2004 , 379, 749-56	3.8	42
61	On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2003 , 284, E980-7	6	36
60	The use of gating technology in bioengineering insulin-secreting cells from embryonic stem cells. <i>Cytotechnology</i> , 2003 , 41, 145-51	2.2	7
59	Bio-engineering inslulin-secreting cells from embryonic stem cells: a review of progress. <i>Medical and Biological Engineering and Computing</i> , 2003 , 41, 384-91	3.1	13
58	Bovine subcommissural organ displays spontaneous and synchronous intracellular calcium oscillations. <i>Brain Research</i> , 2003 , 977, 90-6	3.7	3
57	Nicotinamide induces both proliferation and differentiation of embryonic stem cells into insulin-producing cells. <i>Transplantation Proceedings</i> , 2003 , 35, 2021-3	1.1	39
56	Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1. <i>Endocrinology</i> , 2003 , 144, 335-45	4.8	161
55	Direct visualization by confocal fluorescent microscopy of the permeation of myristoylated peptides through the cell membrane. <i>IUBMB Life</i> , 2002 , 54, 33-6	4.7	11
54	Nuclear KATP channels trigger nuclear Ca(2+) transients that modulate nuclear function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9544-9	11.5	73
53	Low doses of the endocrine disruptor bisphenol-A and the native hormone 17beta-estradiol rapidly activate transcription factor CREB. <i>FASEB Journal</i> , 2002 , 16, 1671-3	0.9	179
52	A nonclassical estrogen membrane receptor triggers rapid differential actions in the endocrine pancreas. <i>Molecular Endocrinology</i> , 2002 , 16, 497-505		115

(1999-2001)

51	From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. <i>Diabetologia</i> , 2001 , 44, 407-15	10.3	142
50	Recent progress in the study of the intracellular functions of diadenosine polyphosphates. <i>Drug Development Research</i> , 2001 , 52, 249-259	5.1	28
49	In-vitro differentiation of pancreatic beta-cells. <i>Differentiation</i> , 2001 , 68, 205-19	3.5	160
48	Stem cells and diabetes. <i>Biomedicine and Pharmacotherapy</i> , 2001 , 55, 206-12	7.5	19
47	Imaging Intracellular Calcium in Living Tissue by Laser-Scanning Confocal Microscopy 2001 , 661-671		
46	Nutrient modulation of polarized and sustained submembrane Ca2+ microgradients in mouse pancreatic islet cells. <i>Journal of Physiology</i> , 2000 , 525 Pt 1, 159-67	3.9	28
45	Nutrient toxicity in pancreatic beta-cell dysfunction. <i>Journal of Physiology and Biochemistry</i> , 2000 , 56, 119-28	5	18
44	Engineering pancreatic islets. <i>Pflugers Archiv European Journal of Physiology</i> , 2000 , 440, 1-18	4.6	43
43	Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 11603-8	11.5	309
42	Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters. <i>Biophysical Journal</i> , 2000 , 79, 1771-86	2.9	35
41	Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells. <i>Biophysical Journal</i> , 2000 , 78, 13-33	2.9	37
40	Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. <i>Diabetes</i> , 2000 , 49, 157-62	0.9	757
39	Junctional communication of pancreatic beta cells contributes to the control of insulin secretion and glucose tolerance. <i>Journal of Clinical Investigation</i> , 2000 , 106, 235-43	15.9	105
38	Engineering pancreatic islets. <i>Pflugers Archiv European Journal of Physiology</i> , 2000 , 440, 1	4.6	3
37	Effects of hexose pentaacetates on electrical activity and cytosolic Ca2+ in mouse pancreatic islets. <i>International Journal of Molecular Medicine</i> , 1999 , 3, 15-20	4.4	4
36	Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. <i>Diabetes</i> , 1999 , 48, 2390-7	0.9	86
35	Mechanisms of glucose hypersensitivity in beta-cells from normoglycemic, partially pancreatectomized mice. <i>Diabetes</i> , 1999 , 48, 1954-61	0.9	29
34	Non-genomic actions of 17beta-oestradiol in mouse pancreatic beta-cells are mediated by a cGMP-dependent protein kinase. <i>Journal of Physiology</i> , 1999 , 521 Pt 2, 397-407	3.9	81

33	Effects of calcium buffering on glucose-induced insulin release in mouse pancreatic islets: an approximation to the calcium sensor. <i>Journal of Physiology</i> , 1999 , 520 Pt 2, 473-83	3.9	21
32	Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. <i>Journal of Physiology</i> , 1999 , 517 (Pt 1), 85-93	3.9	151
31	Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. <i>Diabetes</i> , 1999 , 48, 2007-14	0.9	116
30	Engineered peptides corresponding to segments of the H3 domain of syntaxin inhibit insulin release both in intact and permeabilized mouse pancreatic beta cells. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 248, 83-6	3.4	2
29	Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. <i>FASEB Journal</i> , 1998 , 12, 1341-8	0.9	178
28	Intracellular diadenosine polyphosphates: a novel second messenger in stimulus-secretion coupling. <i>FASEB Journal</i> , 1998 , 12, 1499-506	0.9	37
27	Cytosolic Ca2+ gradients in pancreatic islet-cells stimulated by glucose and carbachol. <i>Biochemical and Biophysical Research Communications</i> , 1997 , 235, 465-8	3.4	17
26	Glucose metabolism regulates cytosolic Ca2+ in the pancreatic beta-cell by three different mechanisms. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 235-43	3.6	4
25	Regulation of pancreatic beta-cell electrical activity and insulin release by physiological amino acid concentrations. <i>Pflugers Archiv European Journal of Physiology</i> , 1997 , 433, 699-704	4.6	34
24	Why are Islets so Important?. Advances in Experimental Medicine and Biology, 1997, 3-10	3.6	
24	Why are Islets so Important?. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 3-10 Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202	3.6	1
	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. Advances in Experimental Medicine		1 48
23	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202 Properties of the nociceptive neurons of the leech segmental ganglion. <i>Journal of Neurophysiology</i> ,	3.6	
23	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202 Properties of the nociceptive neurons of the leech segmental ganglion. <i>Journal of Neurophysiology</i> , 1996 , 75, 2268-79 Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine	3.6	48
23 22 21	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202 Properties of the nociceptive neurons of the leech segmental ganglion. <i>Journal of Neurophysiology</i> , 1996 , 75, 2268-79 Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine 5P[gamma-thio]triphosphate-induced secretion. <i>Biochemical Journal</i> , 1996 , 320 (Pt 1), 201-5	3.6 3.2 3.8	48 35
23 22 21 20	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202 Properties of the nociceptive neurons of the leech segmental ganglion. <i>Journal of Neurophysiology</i> , 1996 , 75, 2268-79 Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine 5P[gamma-thio]triphosphate-induced secretion. <i>Biochemical Journal</i> , 1996 , 320 (Pt 1), 201-5 Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. <i>Cell Calcium</i> , 1996 , 20, 409-14 Secretagogue-induced [Ca2+]i changes in single rat pancreatic islets and correlation with	3.6 3.2 3.8	48 35 66
23 22 21 20	Oscillations of cytosolic Ca2+ in pancreatic islets of Langerhans. <i>Advances in Experimental Medicine and Biology</i> , 1997 , 426, 195-202 Properties of the nociceptive neurons of the leech segmental ganglion. <i>Journal of Neurophysiology</i> , 1996 , 75, 2268-79 Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca(2+)- but not for guanosine SP[gamma-thio]triphosphate-induced secretion. <i>Biochemical Journal</i> , 1996 , 320 (Pt 1), 201-5 Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. <i>Cell Calcium</i> , 1996 , 20, 409-14 Secretagogue-induced [Ca2+]i changes in single rat pancreatic islets and correlation with simultaneously measured insulin release. <i>Journal of Molecular Endocrinology</i> , 1995 , 15, 177-85 A role for calcium release-activated current (CRAC) in cholinergic modulation of electrical activity in	3.6 3.2 3.8 4 4.5	48 35 66 28

LIST OF PUBLICATIONS

15	Inactivation of Delayed Potassium Current in Cultured Bovine Chromaffin Cells. <i>European Journal of Neuroscience</i> , 1991 , 3, 462-472	3.5	4
14	Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. <i>Pflugers Archiv European Journal of Physiology</i> , 1991 , 418, 417-22	4.6	284
13	Muscarinic inhibition of pancreatic B-cells. European Journal of Pharmacology, 1991, 205, 89-91	5.3	6
12	Voltage-sensitive calcium flux into bovine chromaffin cells occurs through dihydropyridine-sensitive and dihydropyridine- and omega-conotoxin-insensitive pathways. <i>Neuroscience</i> , 1989 , 29, 735-47	3.9	60
11	Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans. <i>FEBS Letters</i> , 1989 , 259, 19-23	3.8	169
10	Evidence that muscarinic potentiation of insulin release is initiated by an early transient calcium entry. <i>FEBS Letters</i> , 1988 , 231, 143-7	3.8	31
9	Further evidence that Zn2+ blocks voltage-dependent Ca2+ channels in the mouse pancreatic Lipschemical Society Transactions, 1985 , 13, 680-681	5.1	4
8	Anthroylcholine bromide reveals two muscarinic binding sites in rat brain cortex membranes. <i>Biochemical Society Transactions</i> , 1985 , 13, 703-704	5.1	
7	Monovalent cation permeabilities of the potassium systems in the crab giant axon. <i>Journal of Membrane Biology</i> , 1985 , 84, 117-26	2.3	2
6	Differential blockage of two types of potassium channels in the crab giant axon. <i>Journal of Membrane Biology</i> , 1985 , 84, 127-35	2.3	8
5	Isonicotinic acid hydrazide: early effects on peripheral nerve conduction velocity. <i>Experientia</i> , 1984 , 40, 378-80		3
4	Muscarinic receptor inactivation by butane-2,3-dione. <i>Biochemical Society Transactions</i> , 1984 , 12, 810-8	15.1	
3	Pyridoxal-5?-phosphate content of synaptic membranes. <i>Biochemical Society Transactions</i> , 1984 , 12, 81	2-8.13	1
2	Properties of miniature post-synaptic currents at the Torpedo marmorata nerve-electroplate junction. <i>Quarterly Journal of Experimental Physiology (Cambridge, England)</i> , 1983 , 68, 189-202		16
1	Collagenase and hyaluronidase pretreatment induces sensitivity to d-tubocurarine in frog sciatic nerve. <i>Die Naturwissenschaften</i> , 1981 , 68, 530-1	2	