Michael Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3523266/publications.pdf

Version: 2024-02-01

623734 940533 1,315 16 14 16 citations g-index h-index papers 16 16 16 1390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The origins of agriculture: Intentions and consequences. Journal of Archaeological Science, 2021, 125, 105290.	2.4	23
2	Advances in Morphometrics in Archaeobotany. Environmental Archaeology, 2020, 25, 246-256.	1.2	17
3	Searching for the Origins of Bere Barley: a Geometric Morphometric Approach to Cereal Landrace Recognition in Archaeology. Journal of Archaeological Method and Theory, 2019, 26, 1125-1142.	3.0	31
4	Re-analysis of archaeobotanical remains from pre- and early agricultural sites provides no evidence for a narrowing of the wild plant food spectrum during the origins of agriculture in southwest Asia. Vegetation History and Archaeobotany, 2019, 28, 449-463.	2.1	22
5	Identification of inter- and intra-species variation in cereal grains through geometric morphometric analysis, and its resilience under experimental charring. Journal of Archaeological Science, 2017, 86, 60-67.	2.4	41
6	How did the domestication of Fertile Crescent grain crops increase their yields?. Functional Ecology, 2017, 31, 387-397.	3.6	93
7	The first shoots of a modern morphometrics approach to the origins of agriculture. Web Ecology, $2016, 16, 1-2.$	1.6	11
8	Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia. PLoS ONE, 2015, 10, e0127085.	2.5	62
9	"Nor ever lightning char thy grainâ€ ¹ : establishing archaeologically relevant charring conditions and their effect on glume wheat grain morphology. Science and Technology of Archaeological Research, 2015, 1, 1-6.	2.4	56
10	Refining human palaeodietary reconstruction using amino acid $\hat{l}'15N$ values of plants, animals and humans. Journal of Archaeological Science, 2015, 53, 504-515.	2.4	72
11	Were Fertile Crescent crop progenitors higher yielding than other wild species that were never domesticated?. New Phytologist, 2015, 207, 905-913.	7.3	26
12	Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeology, 2013, 45, 388-409.	1.1	148
13	The effect of charring and burial on the biochemical composition of cereal grains: investigating the integrity of archaeological plant material. Journal of Archaeological Science, 2013, 40, 4767-4779.	2.4	85
14	Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 2013, 40, 4754-4766.	2.4	114
15	Crop manuring and intensive land management by Europe's first farmers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12589-12594.	7.1	466
16	What goes in does not always come out: The impact of the ruminant digestive system of sheep on plant material, and its importance for the interpretation of dung-derived archaeobotanical assemblages. Environmental Archaeology, 2013, 18, 18-30.	1.2	48