
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aqueous metabolome of tissueâ€specific conditional Pten â€knockout mouse prostate cancer and TRAMP neuroendocrine carcinoma. Prostate, 2022, 82, 154-166.	1.2	2
2	Suppressing the activation of protein kinase A as a DNA damage-independent mechanistic lead for dihydromethysticin prophylaxis of NNK-induced lung carcinogenesis. Carcinogenesis, 2022, 43, 659-670.	1.3	4
3	Assessing the Antinociceptive Effects and Tolerance Development of Decursinol in Nociceptive, Inflammatory, and Neuropathic Pain. FASEB Journal, 2022, 36, .	0.2	0
4	Interception Targets of <i>Angelica Gigas</i> Nakai Root Extract versus Pyranocoumarins in Prostate Early Lesions and Neuroendocrine Carcinomas in TRAMP Mice. Cancer Prevention Research, 2021, 14, 635-648.	0.7	1
5	Novel Seleno-Aspirinyl Compound AS-10 Induces Apoptosis, G1 Arrest of Pancreatic Ductal Adenocarcinoma Cells, Inhibits Their NF-ήB Signaling, and Synergizes with Gemcitabine Cytotoxicity. International Journal of Molecular Sciences, 2021, 22, 4966.	1.8	11
6	Kava as a Clinical Nutrient: Promises and Challenges. Nutrients, 2020, 12, 3044.	1.7	32
7	Oral Dosing of Dihydromethysticin Ahead of Tobacco Carcinogen NNK Effectively Prevents Lung Tumorigenesis in A/J Mice. Chemical Research in Toxicology, 2020, 33, 1980-1988.	1.7	12
8	Proteomic and transcriptomic profiling of <i>Pten</i> geneâ€knockout mouse model of prostate cancer. Prostate, 2020, 80, 588-605.	1.2	20
9	The Impact of One-week Dietary Supplementation with Kava on Biomarkers of Tobacco Use and Nitrosamine-based Carcinogenesis Risk among Active Smokers. Cancer Prevention Research, 2020, 13, 483-492.	0.7	9
10	Optimizing liveâ€animal bioluminescence imaging prediction of tumor burden in human prostate cancer xenograft models in SCIDâ€NSG mice. Prostate, 2019, 79, 949-960.	1.2	2
11	Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53â€mediated apoptosis in LNCaP prostate cancer cells. Molecular Carcinogenesis, 2018, 57, 1055-1066.	1.3	13
12	Role of P53-Senescence Induction in Suppression of LNCaP Prostate Cancer Growth by Cardiotonic Compound Bufalin. Molecular Cancer Therapeutics, 2018, 17, 2341-2352.	1.9	32
13	Prostate Cancer Xenograft Inhibitory Activity and Pharmacokinetics of Decursinol, a Metabolite of <i>Angelica gigas</i> Pyranocoumarins, in Mouse Models. The American Journal of Chinese Medicine, 2017, 45, 1773-1792.	1.5	12
14	Pyranocoumarin Tissue Distribution, Plasma Metabolome and Prostate Transcriptome Impacts of Sub-Chronic Exposure to Korean Angelica Supplement in Mice. The American Journal of Chinese Medicine, 2016, 44, 321-353.	1.5	6
15	Characterization of the Fluorescence Properties of 4â€Dialkylaminochalcones and Investigation of the Cytotoxic Mechanism of Chalcones. Archiv Der Pharmazie, 2016, 349, 539-552.	2.1	27
16	Gene expression signatures associated with suppression of TRAMP prostate carcinogenesis by a kavalactoneâ€rich Kava fraction. Molecular Carcinogenesis, 2016, 55, 2291-2303.	1.3	11
17	Unambiguous Identification of βâ€Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling. ChemMedChem, 2016, 11, 1436-1445.	1.6	14
18	Co-targeting hexokinase 2-mediated Warburg effect and ULK1-dependent autophagy suppresses tumor growth of PTEN- and TP53- deficiency-driven castration-resistant prostate cancer. EBioMedicine, 2016, 7, 50-61.	2.7	56

#	Article	IF	CITATIONS
19	Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges. Nutrition and Cancer, 2016, 68, 1-17.	0.9	71
20	Methylseleninic Acid Superactivates p53-Senescence Cancer Progression Barrier in Prostate Lesions of <i>Pten</i> -Knockout Mouse. Cancer Prevention Research, 2016, 9, 35-42.	0.7	17
21	Chemopreventive effect of Korean <i>Angelica</i> root extract on TRAMP carcinogenesis and integrative "omic―profiling of affected neuroendocrine carcinomas. Molecular Carcinogenesis, 2015, 54, 1567-1583.	1.3	18
22	Single Oral Dose Pharmacokinetics of Decursin and Decursinol Angelate in Healthy Adult Men and Women. PLoS ONE, 2015, 10, e0114992.	1.1	21
23	Cancer Chemoprevention with Korean Angelica: Active Compounds, Pharmacokinetics, and Human Translational Considerations. Current Pharmacology Reports, 2015, 1, 373-381.	1.5	14
24	Cytochrome P450 Isoforms in the Metabolism of Decursin and Decursinol Angelate from Korean Angelica. The American Journal of Chinese Medicine, 2015, 43, 1211-1230.	1.5	10
25	Targeting hexokinase 2 in castration-resistant prostate cancer. Molecular and Cellular Oncology, 2015, 2, e974465.	0.3	20
26	Chemopreventive Effects of Korean Angelica versus Its Major Pyranocoumarins on Two Lineages of Transgenic Adenocarcinoma of Mouse Prostate Carcinogenesis. Cancer Prevention Research, 2015, 8, 835-844.	0.7	17
27	Dihydromethysticin from kava blocks tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis and differentially reduces DNA damage in A/J mice. Carcinogenesis, 2014, 35, 2365-2372.	1.3	35
28	Hexokinase 2-Mediated Warburg Effect Is Required for PTEN- and p53-Deficiency-Driven Prostate Cancer Growth. Cell Reports, 2014, 8, 1461-1474.	2.9	233
29	In Vitro Metabolism of Pyranocoumarin Isomers Decursin and Decursinol Angelate by Liver Microsomes from Man and Rodents. Planta Medica, 2013, 79, 1536-1544.	0.7	12
30	Single Oral Dose Pharmacokinetics of Decursin, Decursinol Angelate, and Decursinol in Rats. Planta Medica, 2013, 79, 275-280.	0.7	18
31	Abstract LB-184: A paradigm of carcinogenesis lineage specificities of cancer chemoprevention: Korean <i>Angelica</i> extract and its pyranocoumarins in the transgenic adenocarcinoma of mouse prostate model Cancer Research, 2013, 73, LB-184-LB-184.	0.4	2
32	Quantitative Determination of Decursin, Decursinol Angelate, and Decursinol in Mouse Plasma and Tumor Tissue Using Liquid-Liquid Extraction and HPLC. Planta Medica, 2012, 78, 252-259.	0.7	18
33	Anti-cancer and Other Bioactivities of Korean Angelica gigas Nakai (AGN) and Its Major Pyranocoumarin Compounds. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1239-1254.	0.9	79
34	A synthetic decursin analog with increased in vivo stability suppresses androgen receptor signaling in vitro and in vivo. Investigational New Drugs, 2012, 30, 1820-1829.	1.2	14
35	Tanshinones from Chinese Medicinal Herb Danshen (Salvia miltiorrhiza Bunge) Suppress Prostate Cancer Growth and Androgen Receptor Signaling. Pharmaceutical Research, 2012, 29, 1595-1608.	1.7	48
36	Galbanic acid decreases androgen receptor abundance and signaling and induces G ₁ arrest in prostate cancer cells. International Journal of Cancer, 2012, 130, 200-212.	2.3	30

#	Article	IF	CITATIONS
37	A new chalcone derivative (E)-3-(4-methoxyphenyl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one suppresses prostate cancer involving p53-mediated cell cycle arrests and apoptosis. Anticancer Research, 2012, 32, 3689-98.	0.5	16
38	Lobeâ€specific lineages of carcinogenesis in the transgenic adenocarcinoma of mouse prostate and their responses to chemopreventive selenium. Prostate, 2011, 71, 1429-1440.	1.2	19
39	Lobeâ€specific proteome changes in the dorsalâ€lateral and ventral prostate of TRAMP mice versus wildâ€type mice. Proteomics, 2011, 11, 2542-2549.	1.3	27
40	Proteomic Profiling of Potential Molecular Targets of Methyl-Selenium Compounds in the Transgenic Adenocarcinoma of Mouse Prostate Model. Cancer Prevention Research, 2010, 3, 994-1006.	0.7	26
41	<i>In vivo</i> Anti-Cancer Activity of Korean <i>Angelica Gigas</i> and its Major Pyranocoumarin Decursin. The American Journal of Chinese Medicine, 2009, 37, 127-142.	1.5	74
42	Methyl-Selenium Compounds Inhibit Prostate Carcinogenesis in the Transgenic Adenocarcinoma of Mouse Prostate Model with Survival Benefit. Cancer Prevention Research, 2009, 2, 484-495.	0.7	111
43	Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenite. Carcinogenesis, 2008, 29, 1005-1012.	1.3	133
44	Regulation of Signaling Pathways by Selenium in Cancer. Oxidative Stress and Disease, 2008, , .	0.3	0
45	A novel class of pyranocoumarin anti–androgen receptor signaling compounds. Molecular Cancer Therapeutics, 2007, 6, 907-917.	1.9	57
46	Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells. Breast Cancer Research, 2007, 9, R77.	2.2	77
47	Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. International Journal of Cancer, 2007, 120, 2034-2043.	2.3	100
48	Selenium as a cancer preventive agent. , 2006, , 249-264.		16
49	Potent Antiandrogen and Androgen Receptor Activities of an Angelica gigas–Containing Herbal Formulation: Identification of Decursin as a Novel and Active Compound with Implications for Prevention and Treatment of Prostate Cancer. Cancer Research, 2006, 66, 453-463.	0.4	113
50	PKB/AKT and ERK regulation of caspase-mediated apoptosis by methylseleninic acid in LNCaP prostate cancer cells. Carcinogenesis, 2005, 26, 1374-1381.	1.3	95
51	Selenium and Cancer Chemoprevention: Hypotheses Integrating the Actions of Selenoproteins and Selenium Metabolites in Epithelial and Non-Epithelial Target Cells. Antioxidants and Redox Signaling, 2005, 7, 1715-1727.	2.5	99
52	Methyl selenium metabolites decrease prostate-specific antigen expression by inducing protein degradation and suppressing androgen-stimulated transcription. Molecular Cancer Therapeutics, 2004, 3, 605-11.	1.9	57
53	Selenite-induced p53 Ser-15 phosphorylation and caspase-mediated apoptosis in LNCaP human prostate cancer cells. Molecular Cancer Therapeutics, 2004, 3, 877-84.	1.9	71
54	Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells. Molecular Cancer Therapeutics, 2002, 1, 1059-66.	1.9	113

#	Article	IF	CITATIONS
π			CHAHONS
55	Selenium in Cancer Prevention: Clinical Issues and Implications. Cancer Investigation, 2001, 19, 540-553.	0.6	40
56	Apoptosis and Angiogenesis in Cancer Prevention by Selenium. Advances in Experimental Medicine and Biology, 2001, 492, 131-145.	0.8	34
57	Monomethyl selenium-specific inhibition of MMP-2 and VEGF expression: Implications for angiogenic switch regulation. Molecular Carcinogenesis, 2000, 29, 236-250.	1.3	120
58	Differential induction of growth arrest inducible genes by selenium compounds. Biochemical Pharmacology, 1997, 53, 921-926.	2.0	93
59	A Filter Elution Assay for the Simultaneous Detection of DNA Double and Single Strand Breaks. Analytical Biochemistry, 1996, 235, 227-233.	1.1	11
60	Effect of an aqueous extract of selenium-enriched garlic on in vitro markers and in vivo efficacy in cancer prevention. Carcinogenesis, 1996, 17, 1903-1907.	1.3	93
61	Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochemical Pharmacology, 1995, 50, 213-219.	2.0	127
62	Selenite induction of DNA strand breaks and apoptosis in mouse leukemic L1210 cells. Biochemical Pharmacology, 1994, 47, 1531-1535.	2.0	125
63	Effect of Dietary Methylseleninic Acid and Se-Methylselenocysteine on Carcinogen-Induced, Androgen-Promoted Prostate Carcinogenesis in Rats. Nutrition and Cancer, 0, , 1-8.	0.9	1